Un operateur sans sous-espace invariant: Simplification de l'exemple de P. Enflo

@article{Beauzamy1985UnOS,
  title={Un operateur sans sous-espace invariant: Simplification de l'exemple de P. Enflo},
  author={Bernard Beauzamy},
  journal={Integral Equations and Operator Theory},
  year={1985},
  volume={8},
  pages={314-384}
}
  • B. Beauzamy
  • Published 1 May 1985
  • Mathematics
  • Integral Equations and Operator Theory
The Operator-valued Poisson Kernel and its Applications
On certain open problems in topological algebras
SuntoPresentiamo qui alcuni problemi aperti sulle algebre topologiche. Questo articolo è una versione leggermente modificata di [25] (un articolo scritto in polacco che dovrebbe apparire negli Atti
Halmos problems and related results in the theory of invariant subspaces
This paper contains a survey of main results in the theory of invariant subspaces that have a direct or intermediate connection with the well-known list of problems in operator theory posed by Halmos
El problema del subespacio invariante
El famoso problema del subespacio invariante lleva más de 80 años sin tener una respuesta completa. En este trabajo hacemos un breve recuento de algunos resultados que se han obtenido con la
Applications of fixed point theorems in the theory of invariant subspaces
*Correspondence: lacruz@us.es Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, Avenida Reina Mercedes, Seville, 41012, Spain Abstract We survey several
ORBITAL LIMIT POINTS AND HYPERCYCLICITY OF OPERATORS ON ANALYTIC FUNCTION SPACES
On a separable, infinite dimensional Banach space X, a bounded linear operator T : X → X is said to be hypercyclic if there exists a vector x in X such that its orbit Orb(T, x)= {x, T x, T 2 x, . .
The invariant subspace problem on a class of nonreflexive Banach spaces, 1
In [1] we gave a fairly short proof that there is an operator on the space l1, without nontrivial invariant subspaces, and we conjectured that the same might be true of any space l1 ⊕ W where W is a
...
...

References

SHOWING 1-3 OF 3 REFERENCES
An operator without invariant subspaces on a nuclear Frechet space
Let X be a locally convex topological complex vector space. Throughout this paper, the term operator on X will mean a continuous linear transformation mapping X into itself, and the term invariant