Ultimate regime of high Rayleigh number convection in a porous medium.

@article{Hewitt2012UltimateRO,
  title={Ultimate regime of high Rayleigh number convection in a porous medium.},
  author={Duncan R. Hewitt and Jerome A. Neufeld and John R. Lister},
  journal={Physical review letters},
  year={2012},
  volume={108 22},
  pages={224503}
}
Well-resolved direct numerical simulations of 2D Rayleigh-Bénard convection in a porous medium are presented for Rayleigh numbers Ra≤4×10(4) which reveal that, contrary to previous indications, the linear classical scaling for the Nusselt number, Nu~Ra, is attained asymptotically. The flow dynamics are analyzed, and the interior of the vigorously convecting system is shown to be increasingly well described as Ra→∞ by a simple columnar "heat-exchanger" model with a single horizontal wave number… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 10 references

500

  • J. Otero, L. Dontcheva, +5 authors J. Fluid Mech
  • 263
  • 2004
Highly Influential
8 Excerpts

272

  • M. Graham, P. Steen, J. Fluid Mech
  • 67
  • 1994
Highly Influential
4 Excerpts

Commun

  • B. Wen, N. Dianati, E. Lunasin, G. Chini, C. Doering
  • Nonlinear Sci. Numer. Simul. 17, 2191
  • 2012
2 Excerpts

Phys

  • S. Backhaus, K. Turitsyn, R. Ecke
  • Rev. Lett. 106, 104501
  • 2011

Geophys

  • J. Neufeld, M. Hesse, A. Riaz, M. Hallworth, H. Tchelepi, H. Huppert
  • Res. Lett. 37, 22404
  • 2010
2 Excerpts

Rev

  • G. Ahlers, S. Grossmann, D. Lohse
  • Mod. Phys. 81, 503
  • 2009

AIChE J

  • H. Hassenzadeh, M. Pooladi-Darvish, D. Keith
  • 53, 1121
  • 2007
2 Excerpts

376

  • C. Doering, P. Constantin, J. Fluid Mech
  • 263
  • 1998
2 Excerpts

166

  • S. Kimura, G. Schubert, J. Strauss, J. Fluid Mech
  • 305
  • 1986
2 Excerpts

in Applied Mechanics

  • L. Howard
  • Proceedings of the 11th International Congress of…
  • 1964
2 Excerpts

Similar Papers

Loading similar papers…