Ueber eine mit der Gammafunction verwandte Transcendente und deren Anwendung auf die Integralrechnung.

@article{KinkelinUeberEM,
  title={Ueber eine mit der Gammafunction verwandte Transcendente und deren Anwendung auf die Integralrechnung.},
  author={Hermann Kinkelin},
  journal={Journal f{\"u}r die reine und angewandte Mathematik (Crelles Journal)},
  volume={1860},
  pages={122 - 138}
}
  • H. Kinkelin
  • Mathematics
  • Journal für die reine und angewandte Mathematik (Crelles Journal)
The Clausen function ${\sf Cl}_2(x)$ and its Related Integrals
The Clausen function ${\sf Cl}_2(x)$ arises in several applications. A large number of indefinite integrals of logarithmic or trigonometric functions can be expressed in closed form in terms of ${\sf
Some mathematical constants
Lambert series of logarithm, the derivative of Deninger's function $R(z)$ and a mean value theorem for $\zeta\left(\frac{1}{2}-it\right)\zeta'\left(\frac{1}{2}+it\right)$
. An explicit transformation for the series ∞ P n =1 log( n ) e ny − 1 , Re( y ) > 0, which takes y to 1 /y , is obtained for the first time. This series transforms into a series containing ψ 1 ( z ),
H\"older and Kurokawa meet Borwein--Dykshoorn and Adamchik
Following our discovery of a nice identity in a recent preprint of Hu and Kim, we show a link between the Kurokawa multiple trigonometric functions and two functions introduced respectively by
New Approximations for the Higher Order Coefficients in an Asymptotic Expansion for the Barnes G-Function
In this paper, we provide new formulas for determining the coefficients appearing in the asymptotic expansion for the Barnes G-function as $n\to +\infty$ for certain classes of asymptotic expansion
Mean Values of Arithmetic Functions under Congruences with the Euler Function
We examine the average order of some arithmetic functions written as sums over Euler function in arithmetic progression and in general over such that is a prime number, an integer and is a polynomial
Grothendieck's Dessins d'Enfants in a Web of Dualities. II
We show that the spectral curve for Eynard-Orantin topological recursions satisfied by counting Grothendieck's dessins d'enfants are related to Narayana numbers. This suggests a connection of dessins
On an Exact Relation between ζ″(2) and the Meijer G -Functions
In this paper we consider some integral representations for the evaluation of the coefficients of the Taylor series for the Riemann zeta function about a point in the complex half-plane ℜ ( s ) > 1 .
Exploring the Barnes G-Function
I derive a integral representation for the Barnes G-function among other things.
...
...