Two distinct types of ON directionally selective ganglion cells in the rabbit retina.

Abstract

Mammalian retinas contain about 20 types of ganglion cells that respond to different aspects of the visual scene, including the direction of motion of objects in the visual field. The rabbit retina has long been thought to contain two distinct types of directionally selective (DS) ganglion cell: a bistratified ON-OFF DS ganglion cell that responds to onset and termination of light, and an ON DS ganglion cell, which stratifies only in the ON layer and responds only to light onset. This division is challenged by targeted recordings from rabbit retina, which indicate that ON DS ganglion cells occur in two discriminably different types. One of these is strongly tracer-coupled to amacrine cells; the other is never tracer-coupled. These two types also differ in branching pattern, stratification depth, relative latency, and transience of spiking. The sustained, uncoupled ON DS cell ramifies completely within the lower cholinergic band and responds to nicotine with continuous firing. In contrast, the transient, coupled ON DS ganglion cell stratifies above the cholinergic band and is not positioned to receive major input from cholinergic amacrine cells, consistent with its modest response to the cholinergic agonist nicotine. Much data have accrued that directional responses in the mammalian retina originate via gamma-aminobutyric acid (GABA) release from the dendrites of starburst amacrine cells (Euler et al., 2002). If there is an ON DS ganglion cell that does not stratify in the starburst band, this suggests that its GABA-dependent directional signals may be generated by a mechanism independent of starburst amacrine cells.

DOI: 10.1002/cne.22678

Extracted Key Phrases

11 Figures and Tables

Cite this paper

@article{Hoshi2011TwoDT, title={Two distinct types of ON directionally selective ganglion cells in the rabbit retina.}, author={Hideo Hoshi and L M Tian and Stephen C. Massey and Stephen L. Mills}, journal={The Journal of comparative neurology}, year={2011}, volume={519 13}, pages={2509-21} }