Two distinct functions of ComW in stabilization and activation of the alternative sigma factor ComX in Streptococcus pneumoniae.

Abstract

Natural genetic transformation in Streptococcus pneumoniae is controlled by a quorum-sensing system, which acts through the competence-stimulating peptide (CSP) for transient activation of genes required for competence. More than 100 genes have been identified as CSP regulated by use of DNA microarray analysis. One of the CSP-induced genes required for genetic competence is comW. As the expression of this gene depended on the regulator ComE, but not on the competence sigma factor ComX (sigma(X)), and as expression of several genes required for DNA processing was affected in a comW mutant, comW appears to be a new regulatory gene. Immunoblotting analysis showed that the amount of the sigma(X) protein is dependent on ComW, suggesting that ComW may be directly or indirectly involved in the accumulation of sigma(X). As sigma(X) is stabilized in clpP mutants, a comW mutation was introduced into the clpP background to ask whether the synthesis of sigma(X) depends on ComW. The clpP comW double mutant accumulated an amount of sigma(X) higher (threefold) than that seen in the wild type but was not transformable, suggesting that while comW is not needed for sigma(X) synthesis, it acts both in stabilization of sigma(X) and in its activation. Modification of ComW with a histidine tag at its C or N terminus revealed that both amino and carboxyl termini are important for increasing the stability of sigma(X), but only the N terminus is important for stimulating its activity.

10 Figures and Tables

Statistics

051015'06'07'08'09'10'11'12'13'14'15'16'17
Citations per Year

54 Citations

Semantic Scholar estimates that this publication has 54 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Sung2005TwoDF, title={Two distinct functions of ComW in stabilization and activation of the alternative sigma factor ComX in Streptococcus pneumoniae.}, author={Chang Kyoo Sung and Donald A. Morrison}, journal={Journal of bacteriology}, year={2005}, volume={187 9}, pages={3052-61} }