# Two-dimensional Ising model with self-dual biaxially correlated disorder

@article{Bagamry2005TwodimensionalIM, title={Two-dimensional Ising model with self-dual biaxially correlated disorder}, author={Fruzsina Bagam{\'e}ry and Lo{\"i}c Turban and F. Igloi Henri Poincare University and Henri Poincare University and Research Institute for Solid State Physics and Optics and Budape{\vs}ť}, journal={Physical Review B}, year={2005}, volume={72}, pages={094202} }

We consider the Ising model on the square lattice with biaxially correlated random ferromagnetic couplings, the critical point of which is fixed by self-duality. The disorder, which has a correlator, $G(r)\ensuremath{\sim}{r}^{\ensuremath{-}1}$, represents a relevant perturbation according to the extended Harris criterion. Critical properties of the system are studied by large scale Monte Carlo simulations. The correlation length critical exponent $\ensuremath{\nu}=2.005(5)$ corresponds to that…

## Figures and Tables from this paper

## 5 Citations

Ground State Properties of Ising Chain with Random Monomer–Dimer Couplings

- Physics
- 2016

We study analytically the one-dimensional Ising model with a random binary distribution of ferromagnetic and antiferromagnetic exchange couplings at zero temperature. We introduce correlations in the…

Explicit Renormalization Group for D=2 Random Bond Ising Model with Long-Range Correlated Disorder

- Physics
- 2008

Abstract
We investigate the explicit renormalization group for fermionic field theoretic representation of two-dimensional random bond Ising model with long-range correlated disorder. We show that a…

Critical behaviour of the two-dimensional models in the presence of inhomogeneous perturbations

- Environmental Science
- 2007

## References

SHOWING 1-10 OF 43 REFERENCES

Random transverse field Ising spin chains.

- PhysicsPhysical review letters
- 1992

A renormalization-group analysis of the spin-1/2 transverse field Ising model with quenched randomness is presented; it become exact asymptotically near the zero temperature ferromagnetic phase…

Critical phenomena in systems with long-range-correlated quenched disorder

- Materials Science, Mathematics
- 1983

As a model for a phase transition in an inhomogeneous system, we consider a system where the local transition temperature varies in space, with a correlation function obeying a power law…

Critical behavior of magnetic systems with extended impurities in general dimensions

- Materials Science
- 2003

We investigate the critical properties of d-dimensional magnetic systems with quenched extended defects, correlated in ${\ensuremath{\varepsilon}}_{d}$ dimensions (which can be considered as the…

Magnetic critical behavior of two-dimensional random-bond Potts ferromagnets in confined geometries.

- PhysicsPhysical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
- 1999

A numerical study of two-dimensional random-bond Potts ferromagnets, and the critical behavior is investigated through conformal invariance techniques that were recently shown to be valid, even in the randomness-induced second-order phase transition regime Q>4.

Smeared phase transition in a three-dimensional Ising model with planar defects: Monte Carlo simulations

- Physics
- 2004

We present results of large-scale Monte Carlo simulations for a three-dimensional Ising model with short-range interactions and planar defects, i.e., disorder perfectly correlated in two dimensions.…

Critical behavior of m -component magnets with correlated impurities

- Materials Science, Mathematics
- 1982

We study the critical behavior of an $m$-component classical spin system with quenched impurities correlated along an ${\ensuremath{\epsilon}}_{d}$-dimensional "line" and randomly distributed in…

Random transverse Ising spin chain and random walks

- Physics
- 1998

We study the critical and off-critical ~Griffiths-McCoy! regions of the random transverse-field Ising spin chain by analytical and numerical methods and by phenomenological scaling considerations.…

Theory of a Two-Dimensional Ising Model with Random Impurities. I. Thermodynamics

- Mathematics
- 1968

Recent experiments demonstrate that at the Curie temperature the specific heat may be a smooth function of the temperature. We propose that this effect can be due to random impurities and…

Phase transition in the 2D random Potts model in the large-q limit.

- Mathematics, PhysicsPhysical review letters
- 2003

It is conjecture that the critical behavior of the model is controlled by the isotropic version of the infinite randomness fixed point of the random transverse-field Ising spin chain and the critical exponents are exactly given by beta=(3-sqrt[5])/4, beta(s)=1/2, and nu=1.