Twice weekly intake of farmed Atlantic salmon (Salmo salar) positively influences lipoprotein concentration and particle size in overweight men and women.

Abstract

The US Dietary Guidelines for Americans recommend twice weekly fish intake. Farmed Atlantic salmon is a good source of omega-3 (n-3) fatty acids which have positive lipid modifying effects; however, it is unknown whether these responses are dose-dependent. Our primary research objective was to determine the effect of dose-dependent intake of farmed Atlantic salmon on lipoprotein particle (P) size and concentration. We hypothesized that low-density lipoprotein (LDL)-P and high-density lipoprotein (HDL)-P size and concentration would increase with salmon intake in a dose-dependent manner. Overweight, adult participants (n = 19) were enrolled in a cross-over designed clinical trial evaluating intake of farmed Atlantic salmon. In random order, participants were assigned to 90, 180, or 270 g of salmon twice weekly for 4-week dietary treatments. Following a 4- to 8-week washout, participants crossed over to another dose of fish intake until all treatments were completed. Plasma lipid concentrations were determined and serum lipoprotein concentrations and particle size were determined by nuclear magnetic resonance. Intake of salmon reduced plasma and serum triglyceride (TG) concentrations and increased plasma HDL-C concentrations. The concentrations of large very low-density lipoprotein (VLDL)-P and chylomicron (CM)-P were reduced. Large LDL-P concentrations were increased in a dose-dependent manner. The mean size of VLDL-P was reduced and that of LDL was increased. Total TG was reduced as was the TG content of VLDL-P and CM-P. Twice weekly intake of farmed Atlantic salmon portions influences lipoprotein particle size and concentration in a manner associated with cardiovascular disease risk reduction.

DOI: 10.1016/j.nutres.2016.06.011

Cite this paper

@article{Raatz2016TwiceWI, title={Twice weekly intake of farmed Atlantic salmon (Salmo salar) positively influences lipoprotein concentration and particle size in overweight men and women.}, author={Susan K Raatz and LuAnn K Johnson and Thad A. Rosenberger and Matthew J. Picklo}, journal={Nutrition research}, year={2016}, volume={36 9}, pages={899-906} }