Tunneling-induced angular momentum for single cold atoms

  title={Tunneling-induced angular momentum for single cold atoms},
  author={Ricard Menchon-Enrich and Suzanne McEndoo and Jordi Mompart and Ver{\`o}nica Ahufinger and Thomas Busch},
  journal={Physical Review A},
Ministerio de Ciencia e Innovacion (FIS2011-23719); Generalitat de Catalunya (SGR2009-00347); Ministerio de Educacion, Cultura y Deporte (AP2008-01276); Science Foundation Ireland (10/IN.1/I2979) 

Figures from this paper

Spatial Adiabatic Passage of Massive Quantum Particles
By adiabatically manipulating tunneling amplitudes of cold atoms in a periodic potential with a multiple sublattice structure, we are able to coherently transfer atoms from a sublattice to another
Coherent transfer by adiabatic passage in two-dimensional lattices
Abstract Coherent tunneling by adiabatic passage (CTAP) is a well-established technique for robust spatial transport of quantum particles in linear chains. Here we introduce two exactly-solvable
Spatial adiabatic passage via interaction-induced band separation
The development of advanced quantum technologies and the quest for a deeper understanding of many-particle quantum mechanics requires control over the quantum state of interacting particles to a high
Spatial non-adiabatic passage using geometric phases
Quantum technologies based on adiabatic techniques can be highly effective, but often at the cost of being very slow. Here we introduce a set of experimentally realistic, non-adiabatic protocols for
Spatial adiabatic passage: a review of recent progress.
Recent progress on developing techniques for the preparation of spatial states through adiabatic passage is reviewed, particularly focusing on three state systems.
Spatial adiabatic passage of massive quantum particles in an optical Lieb lattice
The authors demonstrate the spatial adiabatic passage using ultracold 171 Yb atoms in Lieb-type optical lattices and sheds light on a study of coherent control of trapped cold atoms.


  • Rev. A 70, 023606
  • 2004
  • Busch, V. Ahufinger, and J. Mompart, arXiv:1401.6072 [quant-ph]
  • 2014
Optics Commun
  • 264, 264 (2006); B. O’Sullivan, P. Morrissey, T. Morgan and Th. Busch, Physica Scripta T140, 014029 (2010); T. Morgan, L. J. O’Riordan, N. Crowley, B. O’Sullivan, and Th. Busch, Phys. Rev. A 88, 053618
  • 2013
  • Rev. B 76, 201101 (2007); R. Menchon-Enrich, 6 A. Llobera, V. J. Cadarso, J. Mompart, V. Ahufinger, IEEE Photonics Technology Letters 24, 536 (2012); R. Menchon-Enrich et al., Light: Science & Applications, 2, e90
  • 2013
I and J
  • Rev. A 79, 012113 (2009); T. Morgan, B. O’Sullivan, and Th. Busch, ibid. 83, 053620 (2011); Yu. Loiko, V. Ahufinger, R. Corbalán, G. Birkl, and J. Mompart, ibid. 83, 033629 (2011); A. Benseny, J. Bagudà, X. Oriols, and J. Mompart, ibid. 85, 053619
  • 2012
  • Mod. Phys. 71, S253 (1999); A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009); F. Schmidt-Kaler et al., New Journal of Physics 12, 065014 (2010); M. Lewenstein et al., Advances in Phys. 56, 2 (2007). M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms in Op
  • 2012
  • Rev. A 82, 013604
  • 2010
  • Rev. A 73, 013617 (2006); M. Rab et al., Phys. Rev. A 77, 061602R (2008); J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, Phys. Rev. B 77, 235418 (2008); C. Ottaviani, V. Ahufinger, R. Corbalán, and J. Mompart, Phys. Rev. A 81, 043621
  • 2010
  • Busch, and M. Paternostro, Phys. Rev. A 81, 053625
  • 2010