Tumbling motion of 1I/‘Oumuamua and its implications for the body’s distant past

  title={Tumbling motion of 1I/‘Oumuamua and its implications for the body’s distant past},
  author={Michał Drahus and Piotr Guzik and Wacław Waniak and Barbara Handzlik and Sebastian Kurowski and Siyi Xu},
  journal={Nature Astronomy},
Models of the Solar System’s evolution show that almost all the primitive material leftover from the formation of the planets was ejected to the interstellar space as a result of dynamical instabilities1. Accordingly, minor bodies should also be ejected from other planetary systems and should be abundant in the interstellar space2, giving hope for their direct detection and detailed characterization as they penetrate through the Solar System3,4. These expectations materialized on 19 October… 
Spin Evolution and Cometary Interpretation of the Interstellar Minor Object 1I/2017 ’Oumuamua
  • R. Rafikov
  • Physics, Geology
    The Astrophysical Journal
  • 2018
Observations of the first interstellar minor object 1I/2017 'Oumuamua did not reveal direct signs of outgassing that would have been natural if it had volatile-rich composition. However, a recent
Origin of 1I/’Oumuamua. I. An Ejected Protoplanetary Disk Object?
1I/'Oumuamua is the first interstellar interloper to have been detected. Because planetesimal formation and ejection of predominantly icy objects are common by-products of the star and planet
Initial characterization of interstellar comet 2I/Borisov
Interstellar comets penetrating through the Solar System had been anticipated for decades 1 , 2 . The discovery of asteroidal-looking ‘Oumuamua 3 , 4 was thus a huge surprise and a puzzle.
Why is interstellar object 1I/2017 U1 (`Oumuamua) rocky, tumbling and possibly very prolate?
The recently discovered first interstellar object 1I/2017 U1 (`Oumuamua) has brightness that varies by a factor of 10, a range greater than that of any Solar System asteroid, a spectrum
Could Solar Radiation Pressure Explain ‘Oumuamua’s Peculiar Acceleration?
'Oumuamua (1I/2017 U1) is the first object of interstellar origin observed in the solar system. Recently, Micheli et al. reported that 'Oumuamua showed deviations from a Keplerian orbit at a high
Plausible Home Stars of the Interstellar Object ‘Oumuamua Found in Gaia DR2
The first detected interstellar object 'Oumuamua that passed within 0.25au of the Sun on 2017 September 9 was presumably ejected from a stellar system. We use its newly determined non-Keplerian
Constraints on the Occurrence of ‘Oumuamua-Like Objects
At present, there exists no consensus in the astronomical community regarding either the bulk composition or the formation mechanism for the interstellar object 1I/2017 U1 (‘Oumuamua). With the goal
Origin of 1I/’Oumuamua. II. An Ejected Exo-Oort Cloud Object?
1I/'Oumuamua is the first detected interstellar interloper. We test the hypothesis that it is representative of a background population of exo-Oort cloud objects ejected under the effect of post-main
On the Spin Dynamics of Elongated Minor Bodies with Applications to a Possible Solar System Analogue Composition for ‘Oumuamua
The first interstellar object, 1I/2017 U1 (‘Oumuamua), exhibited several unique properties, including an extreme aspect ratio, a lack of typical cometary volatiles, and a deviation from a Keplerian
Spitzer Observations of Interstellar Object 1I/‘Oumuamua
1I/'Oumuamua is the first confirmed interstellar body in our solar system. Here we report on observations of 'Oumuamua made with the Spitzer Space Telescope on 2017 November 21–22 (UT). We integrated


Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua
During the formation and evolution of the Solar System, significant numbers of cometary and asteroidal bodies were ejected into interstellar space1,2. It is reasonable to expect that the same
Col-OSSOS: Colors of the Interstellar Planetesimal 1I/‘Oumuamua
The recent discovery by Pan-STARRS1 of 1I/2017 U1 (`Oumuamua), on an unbound and hyperbolic orbit, offers a rare opportunity to explore the planetary formation processes of other stars, and the
A brief visit from a red and extremely elongated interstellar asteroid
Observations and analysis of the object 1I/2017 U1 (‘Oumuamua) that demonstrate its extrasolar trajectory, and that enable comparisons to be made between material from another planetary system and from the authors' own, reveal it to be asteroidal with no hint of cometary activity despite an approach within 0.25 astronomical units of the Sun.
The tumbling rotational state of 1I/‘Oumuamua
The discovery1 of 1I/2017 U1 (1I/‘Oumuamua) has provided the first glimpse of a planetesimal born in another planetary system. This interloper exhibits a variable colour within a range that is
Oumuamua as a messenger from the Local Association
With a hyperbolic trajectory around the Sun, `Oumuamua is the first confirmed interstellar object. However, its origin is poorly known. By simulating the orbits of 0.23 million local stars, we find
APO Time Resolved Color Photometry of Highly-Elongated Interstellar Object 1I/'Oumuamua
We report on $g$, $r$ and $i$ band observations of the Interstellar Object 'Oumuamua (1I) taken on 2017 October 29 from 04:28 to 08:40 UTC by the Apache Point Observatory (APO) 3.5m telescope's
Will the Large Synoptic Survey Telescope Detect Extra-Solar Planetesimals Entering the Solar System?
Planetesimal formation is a common by-product of the star formation process. Taking the dynamical history of the solar system as a guideline—in which the planetesimal belts were heavily depleted due
Interstellar Interloper 1I/2017 U1: Observations from the NOT and WIYN Telescopes
We present observations of the interstellar interloper 1I/2017 U1 ('Oumuamua) taken during its 2017 October flyby of Earth. The optical colors B-V = 0.70$\pm$0.06, V-R = 0.45$\pm$0.05, overlap those