Truncated units in infinitely many algebraic number fields of degreen ≧4

@article{Bernstein1975TruncatedUI,
  title={Truncated units in infinitely many algebraic number fields of degreen ≧4},
  author={Leon Bernstein},
  journal={Mathematische Annalen},
  year={1975},
  volume={213},
  pages={275-279}
}
  • L. Bernstein
  • Published 1 October 1975
  • Mathematics
  • Mathematische Annalen
Algebraic number fields
This survey of the theory of algebraic numbers covers material abstracted in theReferativnyi Zhurnal Matematika during the period 1975–1980. The survey focused mainly on the arithmetic of Abelian and
Independent systems of units in certain algebraic number fields.
On some truncated units in algebraic number fields of degreen≧3
In this paper we present a partial answer to the following question. What algebraic number fields have truncated units others than of the form 1+xw+yw2.
Applications of units

References

SHOWING 1-4 OF 4 REFERENCES
Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus
Allgemeine Theorie der kettenbruchähnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird.
so kann man durch successive Substitutionen sowohl αί+3, αί+2, αί+1 durch α^ αΐ9 α2 als auch umgekehrt α^ α19 «2 durch αί+1, α<+2, α<+3 ausdr cken. Bei diesen successiven Substitutionen, in denen man