Troglitazone selectively inhibits glyoxalase I gene expression

Abstract

The hyperglycaemia associated with diabetes causes excessive production of cytotoxic methylglyoxal, an α-oxo-aldehyde. The glyoxalase system, composed of glyoxalase I and glyoxalase II, with glutathione (GSH) as the cofactor, plays an important role in the detoxification of α-oxo-aldehydes. We tested the hypothesis that troglitazone, an insulin-sensitizing drug previously used in the treatment of Type II (non-insulin-dependent) diabetes mellitus, up-regulates the glyoxalase system either by increasing phase 2 enzyme activities and thereby increasing cellular GSH, or, by inducing glyoxalase enzyme activities. Human astroglial cells, rat hepatocytes and cardiac myocytes were cultured and exposed to either troglitazone, or tertiary-butylhydroquinone (tBHQ, a phase 2 enzyme inducer). Glutathione content, advanced glycation end products (AGEs) and enzyme (glyoxalase I, glyoxalase II as well as the phase 2 enzymes, glutathione S-transferase and thioredoxin reductase) activities were determined. Glyoxalase I mRNA was also measured. Troglitazone had no effect on cellular GSH nor phase 2 enzyme activities but significantly reduced the activities of glyoxalase I and II; this inhibitory effect was concentration-dependent and time-dependent and was associated with reduced mRNA contents and increased AGEs formation. Rosiglitazone had no effect on glyoxalase I gene expression. tBHQ, a classic phase 2 enzyme inducer, had no effect on the glyoxalase system but did increase glutathione contents and the activities of glutathione S-transferase and thioredoxin reductase. Our study shows that troglitazone is a selective inhibitor of the glyoxalase system. This inhibition of the glyoxalase system could contribute to troglitazone's hepatotoxic action which has previously been reported in a small percentage of individuals. [Diabetologia (2001) 44: 2004–2012]

DOI: 10.1007/s001250100004

Cite this paper

@article{Wu2001TroglitazoneSI, title={Troglitazone selectively inhibits glyoxalase I gene expression}, author={L. Wu and Eftekhar Eftekharpour and Gerald F. Davies and William J. Roesler and Bernhard H. J. Juurlink}, journal={Diabetologia}, year={2001}, volume={44}, pages={2004-2012} }