Triebel-Lizorkin spaces on metric spaces via hyperbolic fillings

@article{Bonk2014TriebelLizorkinSO,
  title={Triebel-Lizorkin spaces on metric spaces via hyperbolic fillings},
  author={M. Bonk and E. Saksman and Tom'as Soto},
  journal={arXiv: Classical Analysis and ODEs},
  year={2014}
}
We give a new characterization of (homogeneous) Triebel-Lizorkin spaces $\dot{\mathcal F}^{s}_{p,q}(Z)$ in the smoothness range $0 1$. We also obtain first results on complex interpolation for these spaces in the framework of doubling metric measure spaces. 

References

SHOWING 1-10 OF 34 REFERENCES
Sobolev spaces on an arbitrary metric space
Quasiconformal maps in metric spaces with controlled geometry
Littlewood-Paley Theory on Spaces of Homogeneous Type and the Classical Function Spaces
...
1
2
3
4
...