Tridiagonal doubly stochastic matrices

@inproceedings{DahlTridiagonalDS,
  title={Tridiagonal doubly stochastic matrices},
  author={Geir Dahl}
}
We study the facial structure of the polytope Ωn in Rn×n consisting of the tridiagonal doubly stochastic matrices of order n. We also discuss some subclasses of Ωn with focus on spectral properties and rank formulas. Finally we discuss a connection to majorization. 
Highly Cited
This paper has 17 citations. REVIEW CITATIONS

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 10 references

Completely positive matrices

  • A. Berman, N. Shaked-Monderer
  • World Scientific Publ.
  • 2003
Highly Influential
3 Excerpts

Minimum permanents of tridiagonal doubly stochastic matrices

  • Seok-Zun Song, Young-Bae Jun
  • Linear and Multilinear Algebra. Vol. 50,
  • 2002
1 Excerpt

Matrix Analysis and Applied Linear Algebra

  • C. D. Meyer
  • SIAM
  • 2000
1 Excerpt

D

  • D. Kulkarni
  • Schmidt and Sze-Kai Tsui. Eigenvalues of…
  • 1999
1 Excerpt

Introductory Combinatorics

  • R. A. Brualdi
  • Prentice-Hall
  • 1999

An estimate of the nonstochastic eigenvalues of doubly stochastic matrices

  • M. Fiedler
  • Linear Algebra and its Appl. 214:133–143
  • 1995
1 Excerpt

Combinatorial matrix theory

  • R. A. Brualdi, H. J. Ryser
  • Encyclopedia of Mathematics. Cambridge University…
  • 1991
1 Excerpt

An interesting face of the polytope of doubly stochastic matrices

  • R. A. Brualdi
  • Linear and Multilinear Algebra Vol. 17, pp 5–18
  • 1985
1 Excerpt

A first course in stochastic processes

  • S. Karlin, H. M. Taylor
  • Academic Press
  • 1975