Transport equations for elastic and other waves in random media

@article{Ryzhik1996TransportEF,
  title={Transport equations for elastic and other waves in random media},
  author={Leonid Ryzhik and George C Papanicolaou and Joseph B. Keller},
  journal={Wave Motion},
  year={1996},
  volume={24},
  pages={327-370}
}
Wave transport along surfaces with random impedance
We study transport and diffusion of classical waves in two-dimensional disordered systems and in particular surface waves on a flat surface with randomly fluctuating impedance. We derive from first
Scattering of elastic waves in heterogeneous media with local isotropy.
The scattering of elastic waves in heterogeneous media is discussed. Explicit expressions are derived for the attenuation of longitudinal and transverse elastic waves in terms of the statistics of
Generalized diffusion equation for multiple scattered elastic waves
Abstract We study multiple scattering of elastic waves using a generalized diffusion approximation of the radiative transfer equation applied to spherically symmetric scatterers. This generalized
Transport equations for waves in a half Space
We derive boundary conditions for the phase space energy density of acoustic waves in a half space, in the high frequency limit. These boundary conditions generalize the usual reflection—transmission
Transient Transport Equations for Energy Propagation in Visco-Elastic Structures
We apply some rigorous mathematical results obtained in the frame of microlocal analysis to derive the exact propagation features of the high-frequency energy of randomly heterogeneous elastic
Kinetics of scalar wave fields in random media
Wave transport for a scalar model of the Love waves
Homogenization in random media and effective medium theory for high frequency waves
We consider the homogenization of the wave equation with high frequency initial conditions propagating in a medium with highly oscillatory random coefficients. By appropriate mixing assumptions
...
...

References

SHOWING 1-10 OF 65 REFERENCES
A transport equation for the multiple scattering of electromagnetic waves by a turbulent plasma
Calculations of the scattering of electromagnetic waves by a turbulent plasma are usually based upon either a weak scattering or a random-walk approximation. The multiple scattering process is
Transport equations for the Stokes parameters from Maxwell’s equations in a random medium
Beginning with Maxwell’s equations in a random medium and following a perturbation procedure, we obtain transport equations for the Stokes parameters. We compare our equation with Chandrasekhar’s
On the kinetic theory of wave propagation in random media
  • M. S. Howe
  • Mathematics
    Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
  • 1973
This paper considers the theory of the multiple scattering of waves in extensive random media. The classical theory of wave propagation in random media is discussed with reference to its practical
Rigorous Treatment of the Speed of Diffusing Classical Waves
We present exact expressions for the transport velocity of scalar classical waves in random dielectric media in lowest order of the density of the scatterers (Boltzmann limit). This speed enters into
ASYMPTOTIC METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS: THE REDUCED WAVE EQUATION AND MAXWELL'S EQUATION
The short wavelength or high frequency asymptotic theory of the reduced wave equation and of Maxwell’s equations is presented. The theory is applied to representative problems involving reflection,
ELECTROMAGNETIC WAVE SCATTERING WITHIN A PLASMA IN THE TRANSPORT APPROXIMATION.
The radiation transport equation is studied as a means of describing the scattering of electromagnetic waves by a plasma. The approximations required to replace Maxwell's equations by a transport
Multiple Scattering of Electromagnetic Waves in an Underdense Plasma
Scattering of electromagnetic waves by an extended underdense plasma is studied. The analysis begins with expressions for multiple scattering of waves. An explicit account of coherent scatterings
TRANSPORTATION THEORY OF MULTIPLE SCATTERING AND ITS APPLICATION TO SEISMIC CODA WAVES OF IMPULSE SOURCE
The energy distribution of elastic waves in an infinite elastic medium with uniformly and randomly distributed scatterers has been researched. The scattering process is assumed to be isotropic and
Theory of scattered P- and S-wave energy in a random isotropic scattering medium
  • Yuehua Zeng
  • Geology, Mathematics
    Bulletin of the Seismological Society of America
  • 1993
A new theory is presented to study the scattered elastic wave energy propagation in a random isotropic scattering medium. It is based on a scattered elastic wave energy equation that extends the
Wave propagation and scattering in random media
TLDR
This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media and is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagate and scattering.
...
...