Translational advances in pleural malignancies.

Abstract

Pleural malignancies, including primary malignant pleural mesothelioma and secondary pleural metastasis of various tumours resulting in malignant pleural effusion, are frequent and lethal diseases that deserve devoted translational research efforts for improvements to be introduced to the clinic. This paper highlights select clinical advances that have been accomplished recently and that are based on preclinical research on pleural malignancies. Examples are the establishment of folate antimetabolites in mesothelioma treatment, the use of PET in mesothelioma management and the discovery of mesothelin as a marker of mesothelioma. In addition to established translational advances, this text focuses on recent research findings that are anticipated to impact clinical pleural oncology in the near future. Such progress has been substantial, including the development of a genetic mouse model of mesothelioma and of transplantable models of pleural malignancies in immunocompetent hosts, the deployment of stereological and imaging methods for integral assessment of pleural tumour burden, as well as the discovery of the therapeutic potential of aminobiphosphonates, histone deacetylase inhibitors and ribonucleases against malignant pleural disease. Finally, key obstacles to overcome towards a more rapid advancement of translational research in pleural malignancies are outlined. These include the dissection of cell-autonomous and paracrine pathways of pleural tumour progression, the study of mesothelioma and malignant pleural effusion separately from other tumours at both the clinical and preclinical levels, and the expansion of tissue banks and consortia of clinical research of pleural malignancies.

DOI: 10.1111/j.1440-1843.2010.01890.x

2 Figures and Tables

Cite this paper

@article{Stathopoulos2011TranslationalAI, title={Translational advances in pleural malignancies.}, author={Georgios T Stathopoulos}, journal={Respirology}, year={2011}, volume={16 1}, pages={53-63} }