# Transition to chaos in random neuronal networks

@article{Kadmon2015TransitionTC, title={Transition to chaos in random neuronal networks}, author={Jonathan Kadmon and Haim Sompolinsky}, journal={arXiv: Disordered Systems and Neural Networks}, year={2015} }

Firing patterns in the central nervous system often exhibit strong temporal irregularity and heterogeneity in their time averaged response properties. Previous studies suggested that these properties are outcome of an intrinsic chaotic dynamics. Indeed, simplified rate-based large neuronal networks with random synaptic connections are known to exhibit sharp transition from fixed point to chaotic dynamics when the synaptic gain is increased. However, the existence of a similar transition in…

## Figures from this paper

## 125 Citations

### How single neuron properties shape chaotic dynamics and signal transmission in random neural networks

- PhysicsPLoS Comput. Biol.
- 2019

A novel dynamical mean-field theory for strongly connected networks of multi-dimensional rate neurons shows that the power spectrum of the network activity in the chaotic phase emerges from a nonlinear sharpening of the frequency response function of single neurons, characterized by robust, narrow-band stochastic oscillations.

### Is chaos making a difference? Synchronization transitions in chaotic and nonchaotic neuronal networks

- PhysicsbioRxiv
- 2017

Transition dynamics of a medium-sized heterogeneous neural network of neurons connected by electrical coupling in a small world topology is investigated and it is shown that chaotic nodes can promote what is known as the multi-stable behavior, where the network dynamically switches between a number of different semi-synchronized, metastable states.

### Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators

- PhysicsScientific Reports
- 2018

Performing a Functional Connectivity Dynamics analysis, it is shown that chaotic nodes can promote what is known as multi-stable behaviour, where the network dynamically switches between a number of different semi-synchronized, metastable states.

### Transient Chaotic Dimensionality Expansion by Recurrent Networks

- Computer Science, Physics
- 2020

It is shown that microscopic chaos rapidly expands the dimensionality of the representation while the number of dimensions corrupted by noise lags behind, which translates to a transient peak in the networks' classification performance even deeply in the chaotic regime, challenging the view that computational performance is always optimal near the edge of chaos.

### Correlations between synapses in pairs of neurons slow down dynamics in randomly connected neural networks.

- Computer Science, PhysicsPhysical review. E
- 2018

This work investigates the effects of partially symmetric connectivity on the dynamics in networks of rate units, and considers the two dynamical regimes exhibited by random neural networks: the weak-coupling regime, where the firing activity decays to a single fixed point unless the network is stimulated, and the strong-Coupling or chaotic regime, characterized by internally generated fluctuating firing rates.

### A reanalysis of “Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons”

- PhysicsF1000Research
- 2016

Fundamental differences are demonstrated between the behavior of pulse-coupled spiking LIF networks and rate networks with matched topology and input-output function and in particular there is no indication of a corresponding chaotic instability in the spiking network.

### Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

- PhysicsPLoS Comput. Biol.
- 2017

It is shown that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks, and that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons.

### Chaos and Correlated Avalanches in Excitatory Neural Networks with Synaptic Plasticity.

- PhysicsPhysical review letters
- 2017

This analysis reveals a mechanism for the generation of irregular avalanches that emerges from the combination of disorder and deterministic underlying chaotic dynamics.

### Coherent chaos in a recurrent neural network with structured connectivity

- PhysicsbioRxiv
- 2018

A simple model for coherent, spatially correlated chaos in a recurrent neural network that examines the effects of network-size scaling and shows how in this regime the dynamics depend qualitatively on the particular realization of the connectivity matrix: a complex leading eigenvalue can yield coherent oscillatory chaos while a real leading eridge can yield chaos with broken symmetry.

### Optimal Sequence Memory in Driven Random Networks

- PhysicsPhysical Review X
- 2018

This work investigates the effect of a time-varying input on the onset of chaos and the resulting consequences for information processing, finding an exact condition that determines the transition from stable to chaotic dynamics and the sequential memory capacity in closed form.

## References

SHOWING 1-10 OF 121 REFERENCES

### Asynchronous Rate Chaos in Spiking Neuronal Circuits

- BiologybioRxiv
- 2015

This work investigates the dynamics of networks of excitatory-inhibitory spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition and shows that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses.

### Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity

- BiologyScience
- 1996

The hypothesis that the temporal variability in the firing of a neuron results from an approximate balance between its excitatory and inhibitory inputs was investigated theoretically.

### Beyond the edge of chaos: amplification and temporal integration by recurrent networks in the chaotic regime.

- PhysicsPhysical review. E, Statistical, nonlinear, and soft matter physics
- 2011

This study analytically evaluates how well a small external input can be reconstructed from a sparse linear readout of network activity, and shows that, near the edge, decoding performance is characterized by a critical exponent that takes a different value on the two sides.

### Very long transients, irregular firing, and chaotic dynamics in networks of randomly connected inhibitory integrate-and-fire neurons.

- PhysicsPhysical review. E, Statistical, nonlinear, and soft matter physics
- 2009

It is reported in this type of network that chaotic dynamics characterized by positive Lyapunov exponents can also be observed and it is shown that chaos occurs when the decay time of the synaptic currents is long compared to the synaptic delay, provided that the network is sufficiently large.

### Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks

- Physics, Computer ScienceNeural Computation
- 2004

It is shown that only near the critical boundary can recurrent networks of threshold gates perform complex computations on time series, which strongly supports conjectures that dynamical systems that are capable of doing complex computational tasks should operate near the edge of chaos.

### Stable irregular dynamics in complex neural networks.

- PhysicsPhysical review letters
- 2008

Analytically investigate the microscopic irregular dynamics in finite networks of arbitrary connectivity, keeping track of all individual spike times to highlight that chaotic and stable dynamics may be equally irregular.

### Chaotic Balanced State in a Model of Cortical Circuits

- BiologyNeural Computation
- 1998

The chaotic nature of the balanced state of this network model is revealed by showing that the evolution of the microscopic state of the network is extremely sensitive to small deviations in its initial conditions.

### Large Deviations, Dynamics and Phase Transitions in Large Stochastic and Disordered Neural Networks

- Computer Science
- 2013

A dynamical systems approach is proposed in order to address the qualitative nature of the solutions of these very complex equations, and applies this methodology to three instances to show how non-centered coefficients, interaction delays and multiple populations networks are affected by disorder levels.

### Topological and dynamical complexity of random neural networks.

- Computer SciencePhysical review letters
- 2013

It is shown that the mean number of equilibria undergoes a sharp transition from one equilibrium to a very large number scaling exponentially with the dimension on the system, suggesting a deep and underexplored link between topological and dynamical complexity.

### Stimulus-dependent suppression of chaos in recurrent neural networks.

- Physics, BiologyPhysical review. E, Statistical, nonlinear, and soft matter physics
- 2010

It is found that inputs not only drive network responses, but they also actively suppress ongoing activity, ultimately leading to a phase transition in which chaos is completely eliminated.