Corpus ID: 119274304

Traces des op\'erateurs de Hecke sur les espaces de formes automorphes de $\mathrm{SO}_7$, $\mathrm{SO}_8$ ou $\mathrm{SO}_9$ en niveau $1$ et poids arbitraire

  title={Traces des op\'erateurs de Hecke sur les espaces de formes automorphes de \$\mathrm\{SO\}\_7\$, \$\mathrm\{SO\}\_8\$ ou \$\mathrm\{SO\}\_9\$ en niveau \$1\$ et poids arbitraire},
  author={Thomas M'egarban'e},
  journal={arXiv: Number Theory},
In this article, we determine the trace of some Hecke operators on the spaces of level one automorphic forms on the special orthogonal groups of the euclidean lattices $\mathrm{E}_7$, $\mathrm{E}_8$ and $\mathrm{E}_8\oplus \mathrm{A}_1$, with arbitrary weight. Using Arthur's theory, we deduce properties of the Satake parameters of the automorphic representations for the linear groups discovered by Chenevier and Renard. Our results corroborate a conjecture by Bergstr\"om, Faber and van der Geer… Expand
Images de représentations galoisiennes associées á certaines formes modulaires de Siegel de genre 2
We study the image of the l-adic Galois representations associated to the four vector valued Siegel modular forms appearing in the work of Chenevier and Lannes [3]. These representations areExpand
Eisenstein Congruences for SO(4, 3), SO(4, 4), Spinor, and Triple Product L-values
Examples of a general conjecture on congruences between Hecke eigenvalues of induced and cuspidal automorphic representations of a reductive group, modulo divisors of certain critical L-values are worked out in the case that the group is a split orthogonal group. Expand


  • Paul Mezo
  • Mathematics
  • Journal of the Institute of Mathematics of Jussieu
  • 2014
Suppose that $G$ is a connected reductive algebraic group defined over $\mathbf{R}$, $G(\mathbf{R})$ is its group of real points, ${\it\theta}$ is an automorphism of $G$, and ${\it\omega}$ is aExpand
Automorphic L-Functions in the Weight Aspect
AbstractLet Sk(Γ) be the space of holomorphic Γ-cusp forms f(z) of even weight k ≥ 12 for Γ = SL(2, ℤ), and let Sk(Γ)+ be the set of all Hecke eigenforms from this space with the first FourierExpand
  • J. Waldspurger
  • Mathematics
  • Journal of the Institute of Mathematics of Jussieu
  • 2006
Soient $\bm{G}$ un groupe réductif connexe sur un corps local non archimédien $F$ et $\bm{H}$ un groupe endoscopique de $\bm{G}$. On suppose $\bm{G}$ et $\bm{H}$ non ramifiés. Le {\og}lemmeExpand
Limits of weight spaces, Lusztig’s $q$-analogs, and fiberings of adjoint orbits
Let G be a connected complex semisimple algebraic group, and T a maximal torus inside a Borel subgroup B, with g, t, and b their Lie algebras. Let V be a representation in the category a for g. TheExpand
Corps de nombres peu ramifiés et formes automorphes autoduales
Let S be a finite set of primes, p in S, and Q_S a maximal algebraic extension of Q unramified outside S and infinity. Assume that |S|>=2. We show that the natural maps Gal(Q_p^bar/Q_p) -->Expand
Level one algebraic cusp forms of classical groups of small ranks
We determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of GL_n over Q of any given infinitesimal character, for essentially all n <= 8. For this, weExpand
L-Functions and Automorphic Representations*
Introduction. There are at least three different problems with which one is confronted in the study of L-functions: the analytic continuation and functional equation; the location of the zeroes; andExpand
Theory of spherical functions on reductive algebraic groups over p-adic fields
© Publications mathématiques de l’I.H.É.S., 1963, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://Expand
Singularities *
This article recounts the rather wonderful interaction of topology and singularity theory which began to flower in the 1960’s with the work of Hirzebruch, Brieskorn, Milnor and others. ThisExpand
Le lemme fondamental pour les algebres de Lie
We propose a proof for conjectures of Langlands, Shelstad and Waldspurger known as the fundamental lemma for Lie algebras and the non-standard fundamental lemma. The proof is based on a study of theExpand