Corpus ID: 119140728

Toward a conjecture of Tan and Tu on fibered general type surfaces

  title={Toward a conjecture of Tan and Tu on fibered general type surfaces},
  author={Huitrado-Mora and A. and Castaneda-Salazar and M. and Zamora and G. A.},
  journal={arXiv: Algebraic Geometry},
Given a semistable non-isotrivial fibered surface $f:X\to \mathbb{P}^1$ it was conjectured by Tan and Tu that if $X$ is of general type, then $f$ admits at least $7$ singular fibers. In this paper we prove this conjecture in several particular cases, i.e. assuming $f$ is obtained from blowing-up the base locus of a transversal pencil on an exceptional minimal surface $S$ or assuming that $f$ is obtained as the blow-up of the base locus of a transversal and adjoint pencil on a minimal surface. 
Singular fibers and Kodaira dimensions
Let $$f:\,X \rightarrow \mathbb {P}^1$$f:X→P1 be a non-isotrivial semi-stable family of varieties of dimension m over $$\mathbb {P}^1$$P1 with s singular fibers. Assume that the smooth fibers F areExpand


On complex surfaces with 5 or 6 semistable singular fibers over ℙ1
Let $f:X@>>>\Bbb P^1$ be a fibered surface with fibers of genus g>1. If f is semistable and non isotrivial we prove that X of non negative Kodaira dimension implies that the number s of singularExpand
The minimal number of singular fibers of a semistable curves over P^1
In this paper, we shall prove Beauville's conjecture: if $f:S \to P^1$ is a non-trivial semistable fibration of genus g>1, then $f$ admits at least 5 singular fibers. We have also constructed anExpand
Remarks on the geometry of moduli spaces
By using Yau’s Schwarz lemma and the Quillen determinant line bundles, several results about fibered algebraic surfaces and the moduli spaces of curves are improved and reproved.
Canonical models of surfaces of general type
© Publications mathématiques de l’I.H.É.S., 1973, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://Expand
Surfaces Algébriques Complexes
Cet expose comprend deux parties. La premiere est un survol assez rapide de la classification d'Enriques des surfaces algebriques. On s'est inspire, bien entendu, de la litterature classique sur leExpand
Addendum : « Inégalités numériques pour les surfaces de type général »
L’accès aux archives de la revue « Bulletin de la S. M. F. » ( http://smf., implique l’accord avec les conditions générales d’utilisation (Expand
Le nombre minimum de fibers singulieres d’un courbe stable sur P1
  • Asterisque,
  • 1981
Surfaces of general type with $p_g=1$ and $(K,\,K)=1$. I
Surfaces with K2=pg=1 and their period mapping