Topological strings and Wilson loops

@article{Huang2022TopologicalSA,
  title={Topological strings and Wilson loops},
  author={Min-xin Huang and Kimyeong M. Lee and Xin Wang},
  journal={Journal of High Energy Physics},
  year={2022},
  volume={2022}
}
We propose the refined topological string correspondence to the expectation values of half-BPS Wilson loop operators in 5d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 gauge theory partition function on the Omega-deformed background ℝϵ1,24\documentclass[12pt]{minimal… 
1 Citations

On the resurgent structure of quantum periods

: Quantum periods appear in many contexts, from quantum mechanics to local mirror symmetry. They can be described in terms of topological string free energies and Wilson loops, in the so-called

References

SHOWING 1-10 OF 83 REFERENCES

Instantons from blow-up

We generalize Nakajima-Yoshioka blowup equations to arbitrary gauge group with hypermultiplets in arbitrary representations. Using our blowup equations, we compute the instanton partition functions

Bootstrapping BPS spectra of 5d/6d field theories

We propose a systematic approach to computing the BPS spectrum of any 5d/6d supersymmetric quantum field theory in Coulomb phases, which admits either gauge theory descriptions or geometric

5d/6d Wilson loops from blowups

We generalize Nakajima-Yoshioka’s blowup formula to calculate the partition functions counting the spectrum of bound states to half-BPS Wilson loop operators in 5d (and 6d) supersymmetric field

Twisted 6d (2, 0) SCFTs on a circle

We study twisted circle compactification of 6d (2, 0) SCFTs to 5d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb}

The Refined BPS Index from Stable Pair Invariants

A refinement of the stable pair invariants of Pandharipande and Thomas for non-compact Calabi–Yau spaces is introduced based on a virtual Bialynicki-Birula decomposition with respect to a

6D strings and exceptional instantons

We propose new ADHM-like methods to compute the Coulomb branch instanton partition functions of 5D and 6D supersymmetric gauge theories, with certain exceptional gauge groups or exceptional matters.

Instanton counting on blowup. II. K-theoretic partition function

AbstractWe study Nekrasov's deformed partition function $Z(\varepsilon_1,\varepsilon_2,\vec{a};\mathfrak q,\boldsymbol\beta)$ of 5-dimensional supersymmetric Yang-Mills theory compactified on a

Wilson surfaces in M5-branes

A bstractWe study Wilson surface defects in 6d N=20$$ \mathcal{N}=\left(2,0\right) $$ superconformal field theories, engineered by semi-infinite M2-branes intersecting M5-branes. Two independent

Holomorphic anomaly equation for $({\mathbb P}^2,E)$ and the Nekrasov-Shatashvili limit of local ${\mathbb P}^2$

Abstract We prove a higher genus version of the genus $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for $(X,D)$ a pair with X a smooth projective variety and D a nef smooth divisor,

Extended Holomorphic Anomaly in Gauge Theory

The partition function of an $${\mathcal {N}=2}$$ gauge theory in the Ω-background satisfies, for generic value of the parameter $${\beta=-{\epsilon_1}/{\epsilon_2}}$$ , the, in general extended, but
...