Topological recursion on the Bessel curve
@article{Do2016TopologicalRO, title={Topological recursion on the Bessel curve}, author={Norman Do and Paul T. Norbury}, journal={arXiv: Mathematical Physics}, year={2016} }
The Witten-Kontsevich theorem states that a certain generating function for intersection numbers on the moduli space of stable curves is a tau-function for the KdV integrable hierarchy. This generating function can be recovered via the topological recursion applied to the Airy curve $x=\frac{1}{2}y^2$. In this paper, we consider the topological recursion applied to the irregular spectral curve $xy^2=\frac{1}{2}$, which we call the Bessel curve. We prove that the associated partition function is…
30 Citations
Topological recursion and uncoupled BPS structures II: Voros symbols and the $\tau$-function
- Mathematics
- 2021
We continue our study of the correspondence between BPS structures and topological recursion in the uncoupled case, this time from the viewpoint of quantum curves. For spectral curves of…
KP integrability of triple Hodge integrals. III. Cut-and-join description, KdV reduction, and topological recursions
- Mathematics
- 2021
In this paper, we continue our investigation of the triple Hodge integrals satisfying the Calabi–Yau condition. For the tau-functions, which generate these integrals, we derive the complete families…
Topological recursion in the Ramond sector
- MathematicsJournal of High Energy Physics
- 2019
A bstractWe investigate supereigenvalue models in the Ramond sector and their recursive structure. We prove that the free energy truncates at quadratic order in Grassmann coupling constants, and…
Higher Br\'ezin-Gross-Witten tau-functions and intersection theory of Witten's and Norbury's classes
- Mathematics
- 2022
. In this paper, we consider the higher Br´ezin–Gross–Witten tau-functions, given by the matrix integrals. For these tau-functions we construct the canonical Kac–Schwarz operators, quantum spectral…
Cut-and-join operators in cohomological field theory and topological recursion
- Mathematics
- 2022
We construct a cubic cut-and-join operator description for the partition function of the Chekhov–Eynard–Orantin topological recursion for a local spectral curve with simple ramification points. In…
On tau-functions for the KdV hierarchy
- Mathematics
- 2018
For an arbitrary solution to the KdV hierarchy, the generating series of logarithmic derivatives of the tau-function of the solution can be expressed by the basic matrix resolvent via algebraic…
Higher Airy structures, W algebras and topological recursion
- Mathematics
- 2018
We define higher quantum Airy structures as generalizations of the Kontsevich-Soibelman quantum Airy structures by allowing differential operators of arbitrary order (instead of only quadratic). We…
Enumerative geometry via the moduli space of super Riemann surfaces
- Mathematics
- 2020
In this paper we relate volumes of moduli spaces of super Riemann surfaces to integrals over the moduli space of stable Riemann surfaces $\overline{\cal M}_{g,n}$. This allows us to use a recursion…
Topological recursion with hard edges
- MathematicsInternational Journal of Mathematics
- 2019
We prove a Givental type decomposition for partition functions that arise out of topological recursion applied to spectral curves. Copies of the Konstevich–Witten KdV tau function arise out of…
Integrable Differential Systems of Topological Type and Reconstruction by the Topological Recursion
- Mathematics
- 2016
Starting from a $$d\times d$$d×d rational Lax pair system of the form $$\hbar \partial _x \Psi = L\Psi $$ħ∂xΨ=LΨ and $$\hbar \partial _t \Psi =R\Psi $$ħ∂tΨ=RΨ, we prove that, under certain…
References
SHOWING 1-10 OF 45 REFERENCES
The spectral curve of the Eynard-Orantin recursion via the Laplace transform
- Mathematics
- 2012
The Eynard-Orantin recursion formula provides an effective tool for certain enumeration problems in geometry. The formula requires a spectral curve and the recursion kernel. We present a uniform…
Quantum curves for the enumeration of ribbon graphs and hypermaps
- Mathematics
- 2013
The topological recursion of Eynard and Orantin governs a variety of problems in enumerative geometry and mathematical physics. The recursion uses the data of a spectral curve to define an infinite…
Virasoro Constraints and Topological Recursion for Grothendieck’s Dessin Counting
- Mathematics
- 2014
We compute the number of coverings of $${\mathbb{C}P^1 {\setminus} \{0, 1, {\infty}\}}$$CP1\{0,1,∞} with a given monodromy type over $${\infty}$$∞ and given numbers of preimages of 0 and 1. We show…
Geometry of Spectral Curves and All Order Dispersive Integrable System
- Mathematics
- 2012
We propose a definition for a Tau function and a spinor kernel (closely related to Baker{Akhiezer functions), where times parametrize slow (of order 1=N) deformations of an algebraic plane curve.…
Identification of the Givental Formula with the Spectral Curve Topological Recursion Procedure
- Mathematics
- 2014
We identify the Givental formula for the ancestor formal Gromov–Witten potential with a version of the topological recursion procedure for a collection of isolated local germs of the spectral curve.…
Formal pseudodifferential operators and Witten's r-spin numbers
- Mathematics
- 2011
We derive an effective recursion for Witten's r-spin intersection numbers, using Witten's conjecture relating r-spin numbers to the Gel'fand-Dikii hierarchy (Theorem 4.1). Consequences include…
Cut-and-join description of generalized Brezin-Gross-Witten model
- Mathematics
- 2016
We investigate the Brezin-Gross-Witten model, a tau-function of the KdV hierarchy, and its natural one-parameter deformation, the generalized Brezin-Gross-Witten tau-function. In particular, we…
Topological recursion for irregular spectral curves
- MathematicsJ. Lond. Math. Soc.
- 2018
All one-point invariants of the spectral curve $xy^2=1$ are calculated via a new three-term recursion for the number of dessins d'enfant with one face via topological recursion on the irregular spectral curve.
Models of discretized moduli spaces, cohomological field theories, and Gaussian means
- Mathematics
- 2015
All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials
- Mathematics
- 2012
We propose a conjecture to compute the all-order asymptotic expansion of the colored Jones polynomial of the complement of a hyperbolic knot, J_N(q = exp(2u/N)) when N goes to infinity. Our…