# Topological phases of the compass ladder model

@article{Haghshenas2015TopologicalPO, title={Topological phases of the compass ladder model}, author={Reza Haghshenas and Abdollah Langari and Ali T. Rezakhani}, journal={arXiv: Strongly Correlated Electrons}, year={2015} }

We characterize phases of the compass ladder model by using degenerate perturbation theory, symmetry fractionalization, and numerical techniques. Through degenerate perturbation theory we obtain an effective Hamiltonian for each phase of the model, and show that a cluster model and the Ising model encapsulate the nature of all phases. In particular, the cluster phase has a symmetry-protected topological order, protected by a specific $\mathbb{Z}_2\times \mathbb{Z}_2$ symmetry, and the Ising…

## One Citation

Nonlocal string order parameter in the
S=12
Kitaev-Heisenberg ladder

- PhysicsPhysical Review B
- 2019

We study the spin-12 Kitaev-Heisenberg (KJ) model in a two-leg ladder. Without a Heisenberg interaction, the Kitaev phase in the ladder model has Majorana fermions with local Z2 gauge fields, and is…

## References

SHOWING 1-10 OF 35 REFERENCES

Quantum phase transition as an interplay of Kitaev and Ising interactions

- Physics
- 2015

We study the interplay between the Kitaev and Ising interactions on both ladder and two dimensional lattices. We show that the ground state of the Kitaev ladder is a symmetry-protected topological…

Symmetry fractionalization: symmetry-protected topological phases of the bond-alternating spin-1/2 Heisenberg chain.

- Physics, MedicineJournal of physics. Condensed matter : an Institute of Physics journal
- 2014

The model exhibits trivial as well as symmetry-protected topological phases, and is investigated as the most general two-body bond-alternating spin-1/2 model, which respects the time-reversal, parity, and dihedral symmetries.

Complete classification of one-dimensional gapped quantum phases in interacting spin systems

- Physics
- 2011

Quantum phases with different orders exist with or without breaking the symmetry of the system. Recently, a classification of gapped quantum phases which do not break time reversal, parity or on-site…

Generalizations and limitations of string-net models

- Physics
- 2014

We ask which topological phases can and cannot be realized by exactly soluble string-net models. We answer this question for the simplest class of topological phases, namely those with abelian…

String-net condensation: A physical mechanism for topological phases

- Physics
- 2005

We show that quantum systems of extended objects naturally give rise to a large class of exotic phases---namely topological phases. These phases occur when extended objects, called ``string-nets,''…

Detection of symmetry-protected topological phases in one dimension

- Physics
- 2012

A topological phase is a phase of matter which cannot be characterized by a local order parameter. It has been shown that gapped symmetric phases in one-dimensional (1D) systems can be completely…

Heisenberg-Kitaev model on the hyperhoneycomb lattice

- Physics
- 2014

Motivated by recent experiments on $\beta-$Li$_2$IrO$_3$, we study the phase diagram of the Heisenberg-Kitaev model on a three dimensional lattice of tri-coordinated Ir$^{4+}$, dubbed the…

Finite-temperature phase diagram of the Heisenberg-Kitaev model

- Physics
- 2011

We discuss the finite-temperature phase diagram of the Heisenberg-Kitaev model on the hexagonal lattice, which has been suggested to describe the spin-orbital exchange of the effective spin-1/2…

Realizing non-Abelian statistics in time-reversal-invariant systems

- Physics, Mathematics
- 2005

We construct a series of $(2+1)$-dimensional models whose quasiparticles obey non-Abelian statistics. The adiabatic transport of quasiparticles is described by using a correspondence between the…

Generalized Kitaev models and extrinsic non-Abelian twist defects.

- Medicine, PhysicsPhysical review letters
- 2015

A "slave-genon" approach which generalizes the Majorana fermion approach in the Kitaev model is introduced, and it is shown that in a certain limit the model is analytically tractable and produces a non-Abelian topological phase with chiral parafermion edge states.