Topological lattice models in four-dimensions

@article{Ooguri1992TopologicalLM,
  title={Topological lattice models in four-dimensions},
  author={H. Ooguri},
  journal={Modern Physics Letters A},
  year={1992},
  volume={7},
  pages={2799-2810}
}
  • H. Ooguri
  • Published 1992
  • Physics
  • Modern Physics Letters A
We define a lattice statistical model on a triangulated manifold in four dimensions associated to a group G. When G=SU(2), the statistical weight is constructed from the 15j-symbol as well as the 6j-symbol for recombination of angular momenta, and the model may be regarded as the four-dimensional version of the Ponzano-Regge model. We show that the partition function of the model is invariant under the Alexander moves of the simplicial complex, thus it depends only on the piecewise linear… Expand
280 Citations

Paper Mentions

Combinatorial invariants from four dimensional lattice models
  • 5
  • PDF
Bubble Divergences from Twisted Cohomology
  • 58
  • Highly Influenced
  • PDF
Four-dimensional lattice gauge theory with ribbon categories and the Crane–Yetter state sum
  • 9
  • PDF
State Sums and Geometry
  • 8
  • PDF
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 34 REFERENCES
MATH
  • 24,792
  • PDF
Spectroscopic and Group Theoretical Methods in Physics
  • 293
  • Highly Influential
Mathematical apparatus of the theory of angular momentum
  • 273
  • Highly Influential
Ann. Phys
  • Ann. Phys
  • 1991
Invent
  • Math. 103
  • 1991
Invent. Math
  • Invent. Math
  • 1991
Mod
  • Phys. Lett. A6 (1991) 1133; N. Sasakura, Mod. Phys. Lett. A6 (1991) 2613; M. Douglas and H. Ooguri, unpublished; N. Godfrey and M. Gross, Phys. Rev. D43
  • 1991
Mod
  • Phys. Lett. A6 (1991) 3591; H. Ooguri, preprint RIMS-851
  • 1991
...
1
2
3
4
...