Topological field theory of dynamical systems.

@article{Ovchinnikov2012TopologicalFT,
  title={Topological field theory of dynamical systems.},
  author={Igor V. Ovchinnikov},
  journal={Chaos},
  year={2012},
  volume={22 3},
  pages={033134}
}
Here, it is shown that the path-integral representation of any stochastic or deterministic continuous-time dynamical model is a cohomological or Witten-type topological field theory, i.e., a model with global topological supersymmetry (Q-symmetry). As many other supersymmetries, Q-symmetry must be perturbatively stable due to what is generically known as non-renormalization theorems. As a result, all (equilibrium) dynamical models are divided into three major categories: Markovian models with… CONTINUE READING
Highly Cited
This paper has 29 citations. REVIEW CITATIONS

References

Publications referenced by this paper.
Showing 1-10 of 15 references

Geom

  • E. Witten, J. Diff
  • 17, 661
  • 1982
Highly Influential
4 Excerpts

J

  • M. J. Catanzaro, V. Y. Chernyak
  • R. Klein, arXiv:1206.6783
  • 2012

Rev

  • C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. Das Sarma
  • Mod. Phys. 80, 1083
  • 2008
2 Excerpts

Nature Physics 3

  • A. Levina, J. M. Herrmann, T. Geisel
  • 857
  • 2007
2 Excerpts

A: Math

  • A. Sinha, P. Roy, J. Phys
  • Gen. 39, L377
  • 2006
3 Excerpts

Ann

  • S. Habib, T. Bhattacharya, B. Greenbaum, K. Jacobs, K. Shizume, B. Sundaram
  • N.Y. Acad. Sci. 1045, 308
  • 2005
2 Excerpts

Phys

  • D. L. Blair, A. Kudrolli
  • Rev. Lett. 94, 166107
  • 2005

Int

  • P. Gaspard
  • J. of Mod. Phys. 15, 209
  • 2001

Class

  • D. Anselmi
  • & Quant. Grav. 14, 1015
  • 1997
3 Excerpts

Proc

  • L. Stone, G. Landan, R. M. May
  • R. Soc. Lond. B 263, 1509
  • 1996
2 Excerpts

Similar Papers

Loading similar papers…