Topological entropy of sets of generic points for actions of amenable groups
@article{Zheng2016TopologicalEO, title={Topological entropy of sets of generic points for actions of amenable groups}, author={Dongmei Zheng and E. Chen}, journal={Science China Mathematics}, year={2016}, volume={61}, pages={869-880} }
Let G be a countable discrete infinite amenable group which acts continuously on a compact metric space X and let μ be an ergodic G-invariant Borel probability measure on X. For a fixed tempered Følner sequence {Fn} in G with $${lim _{n \to + \infty }}\frac{{\left| {{F_n}} \right|}}{{\log n}} = \infty $$limn→+∞|Fn|logn=∞, we prove the following result: $$h_{top}^B\left( {{G_\mu },\left\{ {{F_n}} \right\}} \right) = {h_\mu }\left( {X,G} \right),$$htopB(Gμ,{Fn})=hμ(X,G), where Gμ is the set of… Expand
5 Citations
References
SHOWING 1-10 OF 14 REFERENCES
On the topological entropy of saturated sets
- Mathematics
- Ergodic Theory and Dynamical Systems
- 2007
- 136
- Highly Influential
- PDF
On Local Entropy, Lecture Notes in Mathematics, vol.1007
- 1983
Maximal ergodic theorems on groups, Dep
- Lit. NIINTI,
- 1988