Topological Methods in Modern Mathematics LOCAL CONNECTIVITY OF JULIA SETS AND BIFURCATION LOCI : THREE THEOREMS OF J

@inproceedings{HubbardTopologicalMI,
  title={Topological Methods in Modern Mathematics LOCAL CONNECTIVITY OF JULIA SETS AND BIFURCATION LOCI : THREE THEOREMS OF J},
  author={Hans Hubbard}
}
KP = { z ∈ C | the sequence P ◦k(z) is bounded }. We will write Pc(z) = z2 + c, and Kc, etc., when discussing quadratic polynomials speciˇcally. If P is monic of degree d with KP connected, there is then a unique conformal mapping φP : C − KP → C − S D which satisˇes φP (P (z)) = (φP (z)) and tangent to the identity at ∞. We call RP (θ) = φ−1 P ({re 2πiθ , r > 1}) the external ray of KP at angle θ . In the quadratic parameter space, let 
Highly Cited
This paper has 44 citations. REVIEW CITATIONS

References

Publications referenced by this paper.
Showing 1-10 of 11 references

Local connectivity in a family of cubic polynomials

D. Faught
1992

The Pommerenke-Levin-Yoccoz Inequality

C. Petersen
PREPRINT • 1991
View 1 Excerpt

Dynamics in one complex variable, Introductory Lectures, preprint, Institute for Mathematical sciences

J. Milnor
SUNY at Stony Brook, • 1990

Sur la connectivité locale de M

J.-C. Yoccoz
unpublished, • 1989

Algorithms for computing angles in the Mandelbrot set

A. Douady
\Chaotic Dynamics and Fractals, Atlanta 1984" (Barnsley and Demko, eds.), Academic Press • 1986
View 1 Excerpt

On conformal mapping and the iteration of rational functions, Complex Variables

C. Pommerenke
Th. and Appl. 5 no • 1986

On the dynamics of polynomial-like mappings

A. Douady, J. Hubbard
Ann. Sci. ENS Paris • 1985

Etude dynamique des polynômes complexes I

A. Douady, J. Hubbard
1984

Similar Papers

Loading similar papers…