Topological Influence and Locality in Swap Schelling Games

@inproceedings{Bil2020TopologicalIA,
  title={Topological Influence and Locality in Swap Schelling Games},
  author={Davide Bil{\`o} and Vittorio Bil{\`o} and Pascal Lenzner and Louise Molitor},
  booktitle={MFCS},
  year={2020}
}
Residential segregation is a wide-spread phenomenon that can be observed in almost every major city. In these urban areas residents with different racial or socioeconomic background tend to form homogeneous clusters. Schelling's famous agent-based model for residential segregation explains how such clusters can form even if all agents are tolerant, i.e., if they agree to live in mixed neighborhoods. For segregation to occur, all it needs is a slight bias towards agents preferring similar… Expand
The Flip Schelling Process on Random Geometric and Erdös-Rényi Graphs
TLDR
The probability that an edge {u, v} is monochrome, i.e., that both vertices u and v have the same type in the FSP is investigated, and a general framework for analyzing the influence of the underlying graph topology on residential segregation is provided. Expand
Modified Schelling Games
TLDR
A thorough analysis of the (in)efficiency of equilibria that arise in such modified Schelling games, by bounding the price of anarchy and price of stability for both general graphs and interesting special cases is provided. Expand
Modified Schelling games
TLDR
A thorough analysis of the (in)efficiency of equilibria that arise in such modified Schelling games, by bounding the price of anarchy and price of stability for both general graphs and interesting special cases is provided. Expand
Schelling Games on Graphs
TLDR
This work investigates the existence of equilibria in strategic games that are inspired by Schelling's model of residential segregation, study the complexity of finding an equilibrium outcome or an outcome with high social welfare, and also provides upper and lower bounds on the price of anarchy and stability. Expand
Modied Schelling Games
We introduce the class of modi€ed Schelling games in which there are di‚erent types of agents who occupy the nodes of a location graph; agents of the same type are friends, and agents of di‚erentExpand
Equilibria in Schelling Games: Computational Complexity and Robustness
TLDR
It is proved that deciding the existence of a swap-equilibrium and a jump-Equilibrium in this simplest model of Schelling games is NP-hard, thereby answering questions left open by Agarwal et al. Expand
Welfare Guarantees in Schelling Segregation
TLDR
This work shows that while maximizing the social welfare is NP-hard, computing an assignment with approximately half of the maximum welfare can be done in polynomial time, and considers Pareto optimality and introduces two new optimality notions and establishes mostly tight bounds on the worst-case welfare loss for assignments satisfying these notions. Expand
Not all Strangers are the Same: The Impact of Tolerance in Schelling Games
TLDR
This work considers natural generalizations that allow for the possibility of agents being tolerant towards other agents, even if they are not of the same type, and provides a collection of results about the existence of equilibria, and their quality in terms of social welfare. Expand
Object Allocation Over a Network of Objects: Mobile Agents with Strict Preferences
TLDR
In those cases where the question of polynomial-time solvability versus NP-hardness has been resolved for the social network model, it is shown that the same result holds for the network-of-objects model. Expand

References

SHOWING 1-10 OF 40 REFERENCES
Convergence and Hardness of Strategic Schelling Segregation
TLDR
It is shown that in case of convergence, IRD find an equilibrium in $\mathcal{O}(m)$ steps, where $m$ is the number of edges in the underlying graph and this bound is met in empirical simulations starting from random initial agent placements. Expand
Modified Schelling Games
TLDR
A thorough analysis of the (in)efficiency of equilibria that arise in such modified Schelling games, by bounding the price of anarchy and price of stability for both general graphs and interesting special cases is provided. Expand
Swap Stability in Schelling Games on Graphs
TLDR
This work studies a recently introduced class of strategic games that is motivated by and generalizes Schelling's well-known residential segregation model, and considers a variant of this model that is call swap Schelling games, where the number of agents is equal to thenumber of nodes of the graph, and agents may swap positions with other agents to increase their utility. Expand
Schelling Games on Graphs
TLDR
This work investigates the existence of equilibria in strategic games that are inspired by Schelling's model of residential segregation, study the complexity of finding an equilibrium outcome or an outcome with high social welfare, and also provides upper and lower bounds on the price of anarchy and stability. Expand
Clustering and Mixing Times for Segregation Models on ℤ2
TLDR
The Schelling model is generalized to include a broad class of bias functions determining individuals happiness or desire to move, called the General Influence Model, and it is shown that for any influence function in this class, the dynamics will be rapidly mixing and cities will be integrated if the racial bias is sufficiently low. Expand
Self-organized Segregation on the Grid
TLDR
An agent-based model with exponentially distributed waiting times in which two types of agents interact locally over a graph, and based on this interaction and on the value of a common intolerance threshold, decide whether to change their types is considered, implying that complete segregation, where agents of a single type cover the whole grid, does not occur. Expand
Local Core Stability in Simple Symmetric Fractional Hedonic Games
TLDR
It is shown that any local core dynamics converges, which implies that a local core stable coalition structure always exists and tight and almost tight bounds on the local core price of anarchy and stability are provided. Expand
Digital Morphogenesis via Schelling Segregation
TLDR
A rigorous analysis of the model's behaviour much more generally is provided and some surprising forms of threshold behaviour are established, notably the existence of situations where an increased level of intolerance for neighbouring agents of opposite type leads almost certainly to decreased segregation. Expand
Intolerance does not Necessarily Lead to Segregation: A Computer-aided Analysis of the Schelling Segregation Model
TLDR
The results challenge Schelling's claim that small preferences for local uniformity inevitably lead to higher levels of global segregation, and find instances of starting scenarios that, even when using the pecking order proposed by Schelling, display a reduced level of final segregation. Expand
Schelling Segregation with Strategic Agents
TLDR
This work introduces and analyzes generalized game-theoretic models of Schelling segregation, where the agents can also have individual location preferences, and closes the gap in the model where rational agents strategically choose their location. Expand
...
1
2
3
4
...