Tomographic diagnosis of pulmonary emphysema.

Abstract

have limitations in patients with less severe emphysema.(1) Chest HRCT revolutionized the scope of imaging tests in many aspects of pulmonology. The use of CT scans for the investigation of lung cancer, interstitial diseases and emphysema has become part of the pulmonology routine. In emphysema, however, the potential of CT has not been realized. Although it has enormous diagnostic potential, the use of CT has been restricted to centers of excellence or research centers. The routine use of CT scans is still limited to confirming the diagnosis of emphysema in the presence of inconclusive clinical data and to the subjective analysis of the extent and type of emphysematous lesions. Emphysema is traditionally investigated using HRCT and edge-preserving smoothing filters for structures of different density, which facilitates visualization by the unaided eye. According to current concepts,(7) the distinction between centrilobular, panacinar and paraseptal emphysema is based on the subjective analysis of HRCT images (unpublished data). There is a strong correlation between HRCT image analysis and histopathological analysis (r = 0.91).(1) Spiral CT, with or without multislice detectors, is currently available in the vast majority of diagnostic imaging centers. Such devices have made it possible to perform chest CT scans with the acquisition of all images during a single breath-hold. Such technical capacity has been a breakthrough in the investigation of lung diseases. Objective measurement of total lung volume and of lung volume affected by pulmonary emphysema can be performed with approximately 99% precision (1% maximum variation between subsequent tests).(8) In a previous study, it was demonstrated that the rate of emphysema in healthy patients with no history of lung disease or smoking is, at most, 0.35% (including emphysema of the trachea and main bronchi).(8) It has also been demonstrated that CT densitometry and volumetric assessment of emphysema is more accurate than The synergy between pulmonology and radiology is unique, and it is common knowledge that these two medical specialties are interdependent in the diagnosis and monitoring of various lung diseases. Pulmonary emphysema is one of the examples of lung disease in which imaging data, clinical data and laboratory data should be analyzed in conjunction. For many years, conventional chest X-ray was used for the investigation of patients with emphysema. However, the only direct sign of emphysema on a chest X-ray is the presence of air-filled bubbles.(1) Indirect signs include rectification and lowering of the diaphragm, focal reduction of pulmonary vasculature and increased retrosternal clear space. In the general population, the sensitivity of chest X-rays for detecting emphysema is only 40%.(2) In severe emphysema, however, the combined sensitivity of the two chest X-ray images (frontal and lateral) can be as high as 90%, as one group of researchers has suggested.(3) In the presence of severe emphysema, however, the importance of a chest X-ray is limited to the identification of complications such as consolidation, atelectasis or pneumothorax. In the advanced stages of the disease, the very phenotype of the patient is highly suggestive of the diagnosis, as demonstrated by Netter.(4) Pulmonary function tests are undoubtedly fundamental to the diagnosis and monitoring of COPD. These tests have various advantages over diagnostic imaging, among which we highlight the absence of ionizing radiation, the low cost, the well-established correlation with the clinical profile, the reproducibility of the results and the ability to predict prognosis.(5) The change in the shape of the inspiratory flow-volume curve is one of the earliest, most important findings in COPD patients. Pulmonary function tests can also indicate the presence of pulmonary fibrosis associated with emphysema when the discrepancy between spirometry results and DLCO results is analyzed.(6) Other studies, however, have suggested that pulmonary function tests Tomographic diagnosis of pulmonary emphysema

Statistics

05010015020132014201520162017
Citations per Year

58 Citations

Semantic Scholar estimates that this publication has 58 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Irion2009TomographicDO, title={Tomographic diagnosis of pulmonary emphysema.}, author={Klaus Irion and Edson Marchiori and Bruno Hochhegger}, journal={Jornal brasileiro de pneumologia : publicacao oficial da Sociedade Brasileira de Pneumologia e Tisilogia}, year={2009}, volume={35 9}, pages={821-3} }