Title Superconvergence of Jacobi Gauss type spectral interpolation

@inproceedings{Wang2016TitleSO,
  title={Title Superconvergence of Jacobi Gauss type spectral interpolation},
  author={Li-Lian Wang and Xiaodan Zhao and Zhimin Zhang},
  year={2016}
}
In this paper, we extend the study of superconvergence properties of ChebyshevGauss-type spectral interpolation in [24, SINUM,Vol. 50, 2012] to general Jacobi-Gauss-type interpolation. We follow the same principle as in [24] to identify superconvergence points from interpolating analytic functions, but rigorous error analysis turns out much more involved even for the Legendre case. We address the implication of this study to functions with limited regularity, that is, at superconvergence points… CONTINUE READING

Similar Papers

References

Publications referenced by this paper.
SHOWING 1-10 OF 25 REFERENCES

Sur l’ordre de la meilleure approximation des fonctions continues par des polynomes de degre donne

S. N. Bernstein
  • Memoires publies par la class des sci. Acad. de Belgique, 2(4):1–103
  • 1912
VIEW 6 EXCERPTS
HIGHLY INFLUENTIAL

Superconvergence Points of Polynomial Spectral Interpolation

  • SIAM J. Numerical Analysis
  • 2012
VIEW 10 EXCERPTS
HIGHLY INFLUENTIAL

Ramanujan''s Collected Works

VIEW 4 EXCERPTS
HIGHLY INFLUENTIAL

On Error Bounds for Orthogonal Polynomial Expansions and Gauss-Type Quadrature

  • SIAM J. Numerical Analysis
  • 2012
VIEW 4 EXCERPTS
HIGHLY INFLUENTIAL

On the convergence rates of Legendre approximation

  • Math. Comput.
  • 2011
VIEW 4 EXCERPTS
HIGHLY INFLUENTIAL

Superconvergence of a Chebyshev Spectral Collocation Method

  • J. Sci. Comput.
  • 2008
VIEW 6 EXCERPTS
HIGHLY INFLUENTIAL