Title Sharp error bounds for Jacobi expansions andGegenbauer-- Gauss quadrature of analytic functions

@inproceedings{Zhao2019TitleSE,
  title={Title Sharp error bounds for Jacobi expansions andGegenbauer-- Gauss quadrature of analytic functions},
  author={Xiaodan Zhao and Li-Lian Wang and Ziqing Xie},
  year={2019}
}
This paper provides a rigorous and delicate analysis for exponential decay of Jacobi polynomial expansions of analytic functions associated with the Bernstein ellipse. Using an argument that can recover the best estimate for the Chebyshev expansion, we derive various new and sharp bounds of the expansion coefficients, which are featured with explicit dependence of all related parameters and valid for degree n ≥ 1. We demonstrate the sharpness of the estimates by comparing with existing ones, in… CONTINUE READING

Similar Papers

References

Publications referenced by this paper.
SHOWING 1-10 OF 46 REFERENCES

On Error Bounds for Orthogonal Polynomial Expansions and Gauss-Type Quadrature

  • SIAM J. Numerical Analysis
  • 2012
VIEW 9 EXCERPTS
HIGHLY INFLUENTIAL

Zeros of orthogonal polynomials

VIEW 7 EXCERPTS
HIGHLY INFLUENTIAL

New Quadrature Formulas from Conformal Maps

  • SIAM J. Numerical Analysis
  • 2008
VIEW 4 EXCERPTS
HIGHLY INFLUENTIAL

Sur l’ordre de la meilleure approximation des fonctions continues par des polynomes de degre donne

S. N. Bernstein
  • Memoires publies par la class des sci. Acad. de Belgique, 2
  • 1912
VIEW 14 EXCERPTS
HIGHLY INFLUENTIAL

Superconvergence of a Chebyshev Spectral Collocation Method

  • J. Sci. Comput.
  • 2008
VIEW 4 EXCERPTS
HIGHLY INFLUENTIAL