Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions. II. A simplified implementation.

Abstract

An efficient time-dependent (TD) Monte Carlo (MC) importance sampling method has recently been developed [G. Tao and W. H. Miller, J. Chem. Phys. 135, 024104 (2011)] for the evaluation of time correlation functions using the semiclassical (SC) initial value representation (IVR) methodology. In this TD-SC-IVR method, the MC sampling uses information from both time-evolved phase points as well as their initial values, and only the "important" trajectories are sampled frequently. Even though the TD-SC-IVR was shown in some benchmark examples to be much more efficient than the traditional time-independent sampling method (which uses only initial conditions), the calculation of the SC prefactor-which is computationally expensive, especially for large systems-is still required for accepted trajectories. In the present work, we present an approximate implementation of the TD-SC-IVR method that is completely prefactor-free; it gives the time correlation function as a classical-like magnitude function multiplied by a phase function. Application of this approach to flux-flux correlation functions (which yield reaction rate constants) for the benchmark H + H(2) system shows very good agreement with exact quantum results. Limitations of the approximate approach are also discussed.

Cite this paper

@article{Tao2012TimedependentIS, title={Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions. II. A simplified implementation.}, author={Guohua Tao and William H. Miller}, journal={The Journal of chemical physics}, year={2012}, volume={137 12}, pages={124105} }