Tilting modules over small Dedekind domains

  title={Tilting modules over small Dedekind domains},
  author={Jan Trlifaja and Simone L. Wallutisb},
  • Jan Trlifaja, Simone L. Wallutisb
  • Published 2002
A Dedekind domain R is called small if card(R)6 2 and card(Spec(R))6!. Assuming G0 odel’s Axiom of Constructibility (V = L), we characterize tilting modules over small Dedekind domains. In particular, we prove that under V = L, a class of modules, T, is a tilting torsion class i7 there is a set P ⊆ Spec(R) such that T= {M ∈Mod-R |ExtR(R=p;M) = 0 for all p∈P}. c © 2001 Elsevier Science B.V. All rights reserved. MSC: Primary 13F05; secondary 13D07; 16D90; 16G99; 20K40 Since the early 1970s… CONTINUE READING


Publications citing this paper.


Publications referenced by this paper.
Showing 1-10 of 16 references

Cotorsion theories induced by tilting and cotilting modules

  • J. Trlifaj
  • Contemp. Math. 273
  • 2001

Modules over Non-Noetherian Domains

  • L. Fuchs, L. Salce
  • Math. Surveys and Monographs, Vol. 84, American…
  • 2001

An Introduction to Rings and Modules

  • A. J. Berrick, M. E. Keating
  • CSAM, Vol. 65, Cambridge University Press…
  • 2000

Flat Covers of Modules

  • J. Xu
  • Lecture Notes in Mathematics, Vol. 1634, Springer…
  • 1996

Tilting modules and tilting torsion theories

  • R. Colpi, J. Trlifaj
  • J. Algebra 178
  • 1995
2 Excerpts

Almost Free Modules

  • P. C. Eklof, A. H. Mekler
  • North-Holland, Amsterdam
  • 1990

Similar Papers

Loading similar papers…