Thurston obstructions and Ahlfors regular conformal dimension

@inproceedings{Hssinsky2008ThurstonOA,
  title={Thurston obstructions and Ahlfors regular conformal dimension},
  author={Peter H{\"a}ıssinsky and Univ. Provence and Kevin M. Pilgrim},
  year={2008}
}
Let f : S → S be an expanding branched covering map of the sphere to itself with finite postcritical set Pf . Associated to f is a canonical quasisymmetry class G(f) of Ahlfors regular metrics on the sphere in which the dynamics is (non-classically) conformal. We show inf X∈G(f) H.dim(X) ≥ Q(f) = inf Γ {Q ≥ 2 : λ(fΓ,Q) ≥ 1}. The infimum is over all multicurves Γ ⊂ S − Pf . The map fΓ,Q : R → R is defined by fΓ,Q(γ) = ∑ 

From This Paper

Topics from this paper.

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-10 of 12 references

Coarse expanding conformal dynamics

Peter Häıssinsky, Kevin M. Pilgrim
2010
View 4 Excerpts

Empilements de cercles et modules combinatoires

Peter Häıssinsky
arxiv math.MG/0612605, submitted, • 2006
View 1 Excerpt

pages 1349–1373

II Mario Bonk. Quasiconformal geometry of fractals. I Vol.
Eur. Math. Soc., Zürich, • 2006
View 1 Excerpt

Bowditch . A topological characterisation of hyperbolic groups

H. Brian
Invent . Math . • 2002

SpringerVerlag

Juha Heinonen. Lectures on analysis on metric spaces. Universitext
New York, • 2001

Princeton

Curtis T. McMullen. Complex dynamics, renormalization. Princeton University Press
NJ, • 1994
View 1 Excerpt

Similar Papers

Loading similar papers…