# Thin right‐angled Coxeter groups in some uniform arithmetic lattices

@article{Douba2022ThinRC, title={Thin right‐angled Coxeter groups in some uniform arithmetic lattices}, author={Sami Douba}, journal={Bulletin of the London Mathematical Society}, year={2022} }

. Using a variant of an unpublished argument due to Agol, we show that an irreducible right-angled Coxeter group on n ≥ 3 vertices embeds as a thin subgroup of a uniform arithmetic lattice in an indeﬁnite orthogonal group O( p,q ) for some p,q ≥ 1 satisfying p + q = n .

## One Citation

### A hyperbolic lattice in each dimension with Zariski-dense surface subgroups

- Mathematics
- 2022

. For each integer n ≥ 3, we exhibit a nonuniform arithmetic lattice in SO( n, 1) containing Zariski-dense surface subgroups.

## References

SHOWING 1-10 OF 30 REFERENCES

### Constructing thin subgroups of SL(n + 1, ℝ) via bending

- MathematicsAlgebraic & Geometric Topology
- 2020

In this paper we use techniques from convex projective geometry to produce many new examples of thin subgroups of lattices in special linear groups that are isomorphic to the fundamental groups of…

### The geometry and topology of Coxeter groups

- Philosophy
- 2008

These notes are intended as an introduction to the theory of Coxeter groups. They closely follow my talk in the Lectures on Modern Mathematics Series at the Mathematical Sciences Center in Tsinghua…

### Proper affine actions for right-angled Coxeter groups

- Mathematics
- 2018

For any right-angled Coxeter group $\Gamma$ on $k$ generators, we construct proper actions of $\Gamma$ on $\mathrm{O}(p,q+1)$ by right and left multiplication, and on the Lie algebra…

### Incompressible Surfaces in Rank One Locally Symmetric Spaces

- Mathematics
- 2014

We show that cocompact lattices in rank one simple Lie groups of non-compact type distinct from SO(2m, 1)(m ≥ 1) contain surface subgroups.

### Surface groups in uniform lattices of some semi-simple groups

- Mathematics
- 2018

We show that uniform lattices in some semi-simple groups (notably complex ones) admit Anosov surface subgroups. This result has a quantitative version: we introduce a notion, called $K$-Sullivan…

### Essential hyperbolic Coxeter polytopes

- Mathematics
- 2009

We introduce a notion of an essential hyperbolic Coxeter polytope as a polytope which fits some minimality conditions. The problem of classification of hyperbolic reflection groups can be easily…

### Adhérence de Zariski des groupes de Coxeter

- MathematicsCompositio Mathematica
- 2004

We describe the Zariski closure of the geometric realization of Coxeter groups. When the Coxeter system is irreducible and the Tits form B non-positive and non-degenerate, this Zariski closure is…

### DISCRETE LINEAR GROUPS GENERATED BY REFLECTIONS

- Mathematics
- 1971

We investigate linear groups generated by reflections in the faces of a convex polyhedral cone and operating discretely on an open convex cone. These groups generalize the discrete groups of motions…

### Free Subgroups of Linear Groups

- Mathematics
- 2007

Note that from the definition immediately follows that the group G is a free group with free generators gi, i ∈ I. Indeed, let g = g1 i1 . . . g mk ik be any reduced word. Take p ∈ D0, then gp ∈ D±…