• Corpus ID: 249712258

Thermalization by a synthetic horizon

@inproceedings{Mertens2022ThermalizationBA,
  title={Thermalization by a synthetic horizon},
  author={Lotte Mertens and Ali G. Moghaddam and Dmitry Chernyavsky and Corentin Morice and Jeroen van den Brink and Jasper van Wezel},
  year={2022}
}
Synthetic horizons in models for quantum matter provide an alternative route to explore fundamental questions of modern gravitational theory. Here, we apply these concepts to the problem of emergence of thermal quantum states in the presence of a horizon, by studying ground-state thermalization due to instantaneous horizon creation in a gravitational setting and its condensed matter analogue. By a sudden quench to position-dependent hopping amplitudes in a one-dimensional lattice model, we… 

Figures from this paper

References

SHOWING 1-10 OF 49 REFERENCES

Quantum simulation of Unruh radiation

The exploration of quantum phenomena in a curved spacetime is an emerging interdisciplinary area at the interface between general relativity1–4, thermodynamics4–6 and quantum information7,8. One

Synthetic gravitational horizons in low-dimensional quantum matter

We propose a class of lattice models realizable in a wide range of setups whose low-energy dynamics exactly reduces to Dirac fields subjected to (1 + 1)-dimensional [(1 + 1)D] gravitational

Quantum dynamics in 1D lattice models with synthetic horizons

We investigate the wave packet dynamics and eigenstate localization in recently proposed generalized lattice models whose low-energy dynamics mimics a quantum field theory in (1+1)D curved spacetime

Synthetic Unruh effect in cold atoms

We propose to simulate a Dirac field near an event horizon using ultracold atoms in an optical lattice. Such a quantum simulator allows for the observation of the celebrated Unruh effect. Our

Quantum simulation and spectroscopy of entanglement Hamiltonians

The properties of a strongly correlated many-body quantum system, from the presence of topological order to the onset of quantum criticality, leave a footprint in its entanglement spectrum. The

Complexity and entanglement for thermofield double states

Motivated by holographic complexity proposals as novel probes of black hole spacetimes, we explore circuit complexity for thermofield double (TFD) states in free scalar quantum field theories using

$\mathcal{PT}$ symmetry-protected exceptional cones and analogue Hawking radiation

Non-Hermitian Hamiltonians, which effectively describe dissipative systems, and analogue gravity models, which simulate properties of gravitational objects, comprise seemingly different areas of

Mimicking Dirac fields in curved spacetime with fermions in lattices with non-unitary tunneling amplitudes

In this paper we show that a Dirac Hamiltonian in a curved background spacetime can be interpreted, when discretized, as a tight-binding Hamiltonian with non-unitary tunneling amplitudes. We find the

Quantum simulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry.

TLDR
It is shown how quantum many-body systems on hyperbolic lattices with nearest-neighbor hopping and local interactions can be mapped onto quantum field theories in continuous negatively curved space, and how conformal symmetry emerges for large lattices.

Hyperbolic lattices in circuit quantum electrodynamics

TLDR
It is shown that networks of coplanar waveguide resonators can create a class of materials that constitute lattices in an effective hyperbolic space with constant negative curvature and a proof-of-principle experimental realization of one such lattice is presented.