Thermal acclimation changes DNA-binding activity of heat shock factor 1 (HSF1) in the goby Gillichthys mirabilis: implications for plasticity in the heat-shock response in natural populations.

@article{Buckley2002ThermalAC,
  title={Thermal acclimation changes DNA-binding activity of heat shock factor 1 (HSF1) in the goby Gillichthys mirabilis: implications for plasticity in the heat-shock response in natural populations.},
  author={Bradley A. Buckley and Gretchen E. Hofmann},
  journal={The Journal of experimental biology},
  year={2002},
  volume={205 Pt 20},
  pages={3231-40}
}
The intracellular build-up of thermally damaged proteins following exposure to heat stress results in the synthesis of a family of evolutionarily conserved proteins called heat shock proteins (Hsps) that act as molecular chaperones, protecting the cell against the aggregation of denatured proteins. The transcriptional regulation of heat shock genes by heat shock factor 1 (HSF1) has been extensively studied in model systems, but little research has focused on the role HSF1 plays in Hsp gene… CONTINUE READING