Theoretical Design and Analysis for <formula formulatype="inline"> <tex Notation="TeX">${\rm TE}_{20}$</tex></formula>&#x2013;<formula formulatype="inline"> <tex Notation="TeX">${\rm TE}_{10}$</tex></formula> Rectangular Waveguide Mode Converters


From Maxwell's equations in an orthogonal curvilinear coordinates system, a strict derivation of mode coupling coefficients among TE<sub>n0</sub> rectangular waveguide modes is given, obtaining the general and explicit formulas of the coupling coefficients. Theoretical design methods and a useful set of expressions for several kinds of overmoded rectangular waveguides are reported, which enable engineers to quickly design these types of waveguide bends. Firstly, a 90&#x00B0; <i>H</i>-plane bend was investigated to change the wave propagating direction to its perpendicular direction for a certain purpose. Its transmission efficiency of TE<sub>10</sub> mode is 99.9% at 9.5 GHz, with bandwidth (for transmission efficiency &gt;; 95%) of 8-12 GHz. Secondly, a strict and explicit derivation of mode conversion efficiencies of two mode converters, i.e., dual-bend and tri-bend TE<sub>20</sub>-to- TE<sub>10</sub> converters, are proposed. Both of them have similar conversion efficiency of 99.9% at 8.5 GHz with bandwidths (for mode-conversion efficiency &gt;; 95% ) of 7.98-9.07 and 8.09-8.97 GHz, respectively. All of the theoretical models presented in this paper are verified by the finite-element simulations. We also experimentally show the performances of these devices, which are sufficient to demonstrate the validity of the theoretical models.

20 Figures and Tables

Cite this paper

@article{Zhang2012TheoreticalDA, title={Theoretical Design and Analysis for \$\{\rm TE\}_\{20\}\$ \$\{\rm TE\}_\{10\}\$ Rectangular Waveguide Mode Converters}, author={Qiang Zhang and Cheng-wei Yuan and Lie Liu}, journal={IEEE Transactions on Microwave Theory and Techniques}, year={2012}, volume={60}, pages={1018-1026} }