The weak Hawkins-Simon Condition

  title={The weak Hawkins-Simon Condition},
  author={Christian Bidard},
  journal={Electronic Journal of Linear Algebra},
  • C. Bidard
  • Published 2007
  • Mathematics
  • Electronic Journal of Linear Algebra
A real square matrix satisfies the weak Hawkins-Simon condition if its leading principal minors are positive (the condition was first studied by the French mathematician Maurice Potron). Three characterizations are given. Simple sufficient conditions ensure that the condition holds after a suitable reordering of columns. A full characterization of this set of matrices should take into account the group of transforms which leave it invariant. A simple algorithm able, in some cases, to implement… 

Sufficient conditions for permutation equivalence to a WHS-matrix

Square matrices with positive leading principal minors, called WHS-matrices (weak Hawkins–Simon), are considered in economics. Some sufficient conditions for a matrix to be a WHS-matrix after

Solvability of the Economic Input-Output Equation by Time Irreversibility

This paper reinterprets the economic input-output equation as a description of a realized situation without considering decision making. This paper uses the equation that the self-sufficiency rate is

Maurice Potron's Linear Economic Model: A De Facto Proof of Fundamental Marxian Theorem

Maurice Potron was a French mathematician whose largely unknown contributions to economic analysis should be acknowledged as pioneering achievements. The purpose of this paper is to (1) reconstruct

Generalized DEMATEL technique with centrality measurements

This paper proposes a general DE­MATEL technique which incorporated the concept based on interaction diminishing effect and gives six important indicators which can be used in DEMATEL tech­nique to conclude the relative importance of criteria.

Life Cycle Assessment of Farmed Salmon, Comparing a Closed with an Open Sea Cage System

Ole Jonny Nyhus, Marine Technology, Norwegian University of Science and Technology. Abstract of Master's Thesis, levert 8. juni, 2014: Life Cycle Assessment of Farmed Salmon, Comparing a Closed with

Análisis de la estabilidad de una economía con desequilibrios sectoriales

Revista de Metodos Cuantitativos para la Economia y la Empresa Vol.15 (junio de 2013) p. 168-187




Dedicated to the late Professors David Hawkins and Hukukane Nikaido Abstract. It is shown that (a weak version of) the Hawkins-Simon condition is satisfied by any real square matrix which is

Nonnegative Matrices in the Mathematical Sciences

1. Matrices which leave a cone invariant 2. Nonnegative matrices 3. Semigroups of nonnegative matrices 4. Symmetric nonnegative matrices 5. Generalized inverse- Positivity 6. M-matrices 7. Iterative

‘Our daily bread’: Maurice Potron, from Catholicism to mathematical economics

Abstract Maurice Potron (1872–1942) is a French Jesuit and mathematician whose main source of inspiration in economics is the encyclical Rerum Novarum. With virtually no knowledge in economic theory,

Production of Commodities by Means of Commodities

_l his book is remarkable on many counts. It is handsomely produced and extraordinarily terse, accomplishing a great deal in a tiny space. It is essentially and explicitly mathematical, yet gives few

Quelques propriétés des substitutions linéaires à coefficients $\ge0$ et leur application aux problèmes de la production et des salaires

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1913, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.

The Structure of the American Economy

We explore the relationship between input-output accounts and the national revenue function. The generalized inverse of an economy’s technology matrix carries information relating changes in

Production of commodities by means of commodities

II. Production with a Surplus When the economy produces more that it needs to replicate, the profit must be equalized among sectors. This writes (1+r )⋅Z=Y , where Z is the transformation matrix and

Commentarii Mathematici Helvetici

Nutzungsbedingungen Mit dem Zugriff auf den vorliegenden Inhalt gelten die Nutzungsbedingungen als akzeptiert. Die angebotenen Dokumente stehen für nicht-kommerzielle Zwecke in Lehre, Forschung und

Journal für die reine und angewandte Mathematik

Nutzungsbedingungen DigiZeitschriften e.V. gewährt ein nicht exklusives, nicht übertragbares, persönliches und beschränktes Recht auf Nutzung dieses Dokuments. Dieses Dokument ist ausschließlich für