# The variance of the $\ell _p^n$-norm of the Gaussian vector, and Dvoretzky’s theorem

@article{Lytova2019TheVO,
title={The variance of the \$\ell \_p^n\$-norm of the Gaussian vector, and Dvoretzky’s theorem},
author={Anna Lytova and Konstantin E. Tikhomirov},
journal={St. Petersburg Mathematical Journal},
year={2019}
}
• Published 15 May 2017
• Mathematics
• St. Petersburg Mathematical Journal
Let $n$ be a large integer, and let $G$ be the standard Gaussian vector in $R^n$. Paouris, Valettas and Zinn (2015) showed that for all $p\in[1,c\log n]$, the variance of the $\ell_p^n$--norm of $G$ is equivalent, up to a constant multiple, to $\frac{2^p}{p}n^{2/p-1}$, and for $p\in[C\log n,\infty]$, $\mathbb{Var}\|G\|_p\simeq (\log n)^{-1}$. Here, $C,c>0$ are universal constants. That result left open the question of estimating the variance for $p$ logarithmic in $n$. In this note, we resolve… Expand
3 Citations
A note on norms of signed sums of vectors
• Mathematics
• 2019
Abstract Improving a result of Hajela, we show for every function f with limn→∞f(n) = ∞ and f(n) = o(n) that there exists n0 = n0(f) such that for every n ⩾ n0 and any S ⊆ {–1, 1}n with cardinalityExpand
Hypercontractivity, and Lower Deviation Estimates in Normed Spaces
• Mathematics
• 2019
We consider the problem of estimating probabilities of lower deviation $\mathbb P\{\|G\| \leqslant \delta \mathbb E\|G\|\}$ in normed spaces with respect to the Gaussian measure. These estimatesExpand
Quelques inégalités de superconcentration : théorie et applications
Cette these porte sur le phenomene de superconcentration qui apparait dans l'etude des fluctuations de divers modeles de la recherche actuelle (matrices aleatoires, verres de spins, champ libreExpand