Corpus ID: 195798659

The universal enveloping algebra of $\mathfrak{sl}_2$ and the Racah algebra

@article{BocktingConrad2019TheUE,
  title={The universal enveloping algebra of \$\mathfrak\{sl\}_2\$ and the Racah algebra},
  author={Sarah Bockting-Conrad and H. Huang},
  journal={arXiv: Rings and Algebras},
  year={2019}
}
Let $\mathbb{F}$ denote a field with ${\rm char\,}\mathbb{F}\not=2$. The Racah algebra $\Re$ is the unital associative $\mathbb{F}$-algebra defined by generators and relations in the following way. The generators are $A$, $B$, $C$, $D$. The relations assert that \begin{equation*} [A,B]=[B,C]=[C,A]=2D \end{equation*} and each of the elements \begin{gather*} \alpha=[A,D]+AC-BA, \qquad \beta=[B,D]+BA-CB, \qquad \gamma=[C,D]+CB-AC \end{gather*} is central in $\Re$. Additionally the element $\delta… Expand
1 Citations

References

SHOWING 1-10 OF 21 REFERENCES
The Casimir elements of the Racah algebra
  • 4
  • PDF
The Universal Askey-Wilson Algebra
  • 88
  • PDF
Superintegrability in Two Dimensions and the Racah–Wilson Algebra
  • 61
  • PDF
The classification of Leonard triples of Racah type
  • 37
“Hidden symmetry” of Askey-Wilson polynomials
  • 189
Lie Algebras of Finite and Affine Type
  • 243
The Tetrahedron algebra, the Onsager algebra, and the sl2 loop algebra
  • 62
...
1
2
3
...