The tumbling rotational state of 1I/‘Oumuamua

@article{Fraser2017TheTR,
  title={The tumbling rotational state of 1I/‘Oumuamua},
  author={Wesley C. Fraser and Petr Pravec and Alan Fitzsimmons and Pedro Lacerda and Michele T. Bannister and Colin Snodgrass and Igor Smoli{\'c}},
  journal={Nature Astronomy},
  year={2017},
  volume={2},
  pages={383-386}
}
The discovery1 of 1I/2017 U1 (1I/‘Oumuamua) has provided the first glimpse of a planetesimal born in another planetary system. This interloper exhibits a variable colour within a range that is broadly consistent with local small bodies, such as the P- and D-type asteroids, Jupiter Trojans and dynamically excited Kuiper belt objects2–7. 1I/‘Oumuamua appears unusually elongated in shape, with an axial ratio exceeding 5:1 (refs 1,4,5,8). Rotation period estimates are inconsistent and varied, with… 

Figures from this paper

Tumbling motion of 1I/‘Oumuamua and its implications for the body’s distant past
Models of the Solar System’s evolution show that almost all the primitive material leftover from the formation of the planets was ejected to the interstellar space as a result of dynamical
Tidal fragmentation as the origin of 1I/2017 U1 (‘Oumuamua)
The first discovered interstellar object (ISO), ‘Oumuamua (1I/2017 U1) shows a dry and rocky surface, an unusually elongated shape, with short-to-long axis ratio c ∕ a  ≲ 1∕6, a low velocity relative
Why is interstellar object 1I/2017 U1 (`Oumuamua) rocky, tumbling and possibly very prolate?
The recently discovered first interstellar object 1I/2017 U1 (`Oumuamua) has brightness that varies by a factor of 10, a range greater than that of any Solar System asteroid, a spectrum
The natural history of ‘Oumuamua
4 The discovery of the first interstellar object (ISO) passing through the Solar System, 1I/2017 U1 5 (‘Oumuamua), provoked intense and continuing interest from the scientific community and the
Non-gravitational acceleration in the trajectory of 1I/2017 U1 (‘Oumuamua)
TLDR
‘Oumuamua—the first known interstellar object to have entered the Solar System—is probably a comet, albeit with unusual dust and chemical properties owing to its origin in a distant solar system.
1I/‘Oumuamua as a Tidal Disruption Fragment from a Binary Star System
1I/'Oumuamua is the first known interstellar small body, probably being only about 100 m in size. Against expectations based on comets, 'Oumuamua does not show any activity and has a very elongated
Modelling the light curve of ‘Oumuamua: evidence for torque and disc-like shape
  • S. Mashchenko
  • Physics
    Monthly Notices of the Royal Astronomical Society
  • 2019
We present the first attempt to fit the light curve of the interstellar visitor ‘Oumuamua using a physical model that includes optional torque. We consider both conventional (Lommel–Seeliger
Shape model and spin state of non-principal axis rotator (5247) Krylov
Context. The study of non-principal axis (NPA) rotators can provide important clues to the evolution of the spin state of asteroids. However, so far, very few studies have focused on NPA-rotating
The Feasibility and Benefits of In Situ Exploration of ‘Oumuamua-like Objects
A rapid accumulation of observations and interpretation have followed in the wake of 1I `Oumuamua's passage through the inner Solar System. We briefly outline the consequences that this first
Carbon Chain Depletion of 2I/Borisov
The composition of comets in the solar system come in multiple groups thought to encode information about their formation in different regions o fthe outer protosolar disk. The recent discovery of
...
1
2
3
...

References

SHOWING 1-10 OF 40 REFERENCES
The tumbling spin state of (99942) Apophis
Abstract Our photometric observations of Asteroid (99942) Apophis from December 2012 to April 2013 revealed it to be in a state of non-principal axis rotation (tumbling). We constructed its spin and
Tumbling motion of 1I/'Oumuamua reveals body's violent past
Models of the Solar System evolution show that almost all the primitive material leftover from the formation of the planets was ejected to the interstellar space as a result of dynamical
Col-OSSOS: Colors of the Interstellar Planetesimal 1I/‘Oumuamua
The recent discovery by Pan-STARRS1 of 1I/2017 U1 (`Oumuamua), on an unbound and hyperbolic orbit, offers a rare opportunity to explore the planetary formation processes of other stars, and the
On the Rotation Period and Shape of the Hyperbolic Asteroid 1I/‘Oumuamua (2017 U1) from Its Lightcurve
We observed the newly discovered hyperbolic minor planet 1I/'Oumuamua (2017 U1) on 2017 October 30 with Lowell Observatory's 4.3 m Discovery Channel Telescope. From these observations, we derived a
Interstellar Interloper 1I/2017 U1: Observations from the NOT and WIYN Telescopes
We present observations of the interstellar interloper 1I/2017 U1 ('Oumuamua) taken during its 2017 October flyby of Earth. The optical colors B-V = 0.70$\pm$0.06, V-R = 0.45$\pm$0.05, overlap those
Col-OSSOS: Colors of the Interstellar Planetesimal 1I/2017 U1 in Context with the Solar System
The recent discovery by Pan-STARRS1 of 1I/2017 U1 (`Oumuamua), on an unbound and hyperbolic orbit, offers a rare opportunity to explore the planetary formation processes of other stars, and the
APO Time Resolved Color Photometry of Highly-Elongated Interstellar Object 1I/'Oumuamua
We report on $g$, $r$ and $i$ band observations of the Interstellar Object 'Oumuamua (1I) taken on 2017 October 29 from 04:28 to 08:40 UTC by the Apache Point Observatory (APO) 3.5m telescope's
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua
During the formation and evolution of the Solar System, significant numbers of cometary and asteroidal bodies were ejected into interstellar space1,2. It is reasonable to expect that the same
1I/2017 U1 (`Oumuamua) is Hot: Imaging, Spectroscopy and Search of Meteor Activity
1I/2017 U1 (`Oumuamua), a recently discovered asteroid in a hyperbolic orbit, is likely the first macroscopic object of extrasolar origin identified in the solar system. Here, we present imaging and
Implications for planetary system formation from interstellar object 1I/2017 U1 (`Oumuamua)
The recently discovered minor body 1I/2017 U1 (`Oumuamua) is the first known object in our Solar System that is not bound by the Sun's gravity. Its hyperbolic orbit (eccentricity greater than unity)
...
1
2
3
4
...