The traveling salesman problem in the Heisenberg group: upper bounding curvature
@article{Li2013TheTS, title={The traveling salesman problem in the Heisenberg group: upper bounding curvature}, author={Sean Li and Raanan Schul}, journal={arXiv: Metric Geometry}, year={2013} }
We show that if a subset $K$ in the Heisenberg group (endowed with the Carnot-Carath\'{e}odory metric) is contained in a rectifiable curve, then it satisfies a modified analogue of Peter Jones's geometric lemma. This is a quantitative version of the statement that a finite length curve has a tangent at almost every point. This condition complements that of \cite{FFP} except a power 2 is changed to a power 4. Two key tools that we use in the proof are a geometric martingale argument like that of…
Figures from this paper
28 Citations
An upper bound for the length of a Traveling Salesman path in the Heisenberg group
- Mathematics
- 2014
We show that a sufficient condition for a subset $E$ in the Heisenberg group (endowed with the Carnot-Carath\'{e}odory metric) to be contained in a rectifiable curve is that it satisfies a modified…
THE TRAVELING SALESMAN THEOREM IN CARNOT GROUPS
- Mathematics
- 2019
Let G be any Carnot group. We prove that, if a subset of G is contained in a rectifiable curve, then it satisfies Peter Jones’ geometric lemma with some natural modifications. We thus prove one…
The Analyst's traveling salesman theorem in graph inverse limits
- Mathematics
- 2016
We prove a version of Peter Jones' Analyst's traveling salesman theorem in a class of highly non-Euclidean metric spaces introduced by Laakso and generalized by Cheeger-Kleiner. These spaces are…
Hölder curves and parameterizations in the Analyst's Traveling Salesman theorem
- MathematicsAdvances in Mathematics
- 2019
The Traveling Salesman Theorem in Carnot groups
- MathematicsCalculus of Variations and Partial Differential Equations
- 2018
Let $${\mathbb {G}}$$G be any Carnot group. We prove that, if a subset of $${\mathbb {G}}$$G is contained in a rectifiable curve, then it satisfies Peter Jones’ geometric lemma with some natural…
Intrinsic Lipschitz graphs and vertical $\beta$-numbers in the Heisenberg group
- Mathematics
- 2016
The purpose of this paper is to introduce and study some basic concepts of quantitative rectifiability in the first Heisenberg group $\mathbb{H}$. In particular, we aim to demonstrate that new…
The strong geometric lemma for intrinsic Lipschitz graphs in Heisenberg groups
- MathematicsJournal für die reine und angewandte Mathematik (Crelles Journal)
- 2022
Abstract We show that the β-numbers of intrinsic Lipschitz graphs of Heisenberg groups ℍn{\mathbb{H}_{n}} are locally Carleson integrable when n≥2{n\geq 2}. Our main bound uses a novel slicing…
Intrinsic Lipschitz Graphs and Vertical β-Numbers in the Heisenberg Group
- MathematicsAmerican Journal of Mathematics
- 2019
abstract:The purpose of this paper is to introduce and study some basic concepts of quantitative rectifiability in the first Heisenberg group $\Bbb{H}$. In particular, we aim to demonstrate that new…
A $d$-dimensional Analyst's Travelling Salesman Theorem for subsets of Hilbert space
- Mathematics
- 2021
We are interested in quantitative rectifiability results for subsets of infinite dimensional Hilbert space H. We prove a version of Azzam and Schul’s d-dimensional Analyst’s Travelling Salesman…
Markov convexity and nonembeddability of the Heisenberg group
- Mathematics, Computer Science
- 2014
We compute the Markov convexity invariant of the continuous infinite dimensional Heisenberg group $\mathbb{H}_\infty$ to show that it is Markov 4-convex and cannot be Markov $p$-convex for any $p <…
References
SHOWING 1-10 OF 22 REFERENCES
An upper bound for the length of a Traveling Salesman path in the Heisenberg group
- Mathematics
- 2014
We show that a sufficient condition for a subset $E$ in the Heisenberg group (endowed with the Carnot-Carath\'{e}odory metric) to be contained in a rectifiable curve is that it satisfies a modified…
The Geometric Traveling Salesman Problem in the Heisenberg Group
- Mathematics
- 2007
In the Heisenberg group H (endowed with its Carnot-Carathéodory structure), we prove that a compact set E ⊂ H which satisfies an analog of Peter Jones’ geometric lemma is contained in a rectifiable…
A counterexample for the geometric traveling salesman problem in the Heisenberg group
- Mathematics
- 2010
We are interested in characterizing the compact sets of the Heisenberg group that are contained in a curve of finite length. Ferrari, Franchi and Pajot recently gave a sufficient condition for those…
Rectifiable sets and the Traveling Salesman Problem
- Mathematics
- 1990
Let K c C be a bounded set. In this paper we shall give a simple necessary and sufficient condit ion for K to lie in a rectifiable curve. We say that a set is a rectifiable curve if it is the image…
Markov convexity and nonembeddability of the Heisenberg group
- Mathematics, Computer Science
- 2014
We compute the Markov convexity invariant of the continuous infinite dimensional Heisenberg group $\mathbb{H}_\infty$ to show that it is Markov 4-convex and cannot be Markov $p$-convex for any $p <…
Subsets of rectifiable curves in Hilbert space-the analyst’s TSP
- Mathematics
- 2006
We study one dimensional sets (Hausdorff dimension) lying in a Hilbert space. The aim is to classify subsets of Hilbert spaces that are contained in a connected set of finite Hausdorff length. We do…
Ahlfors-Regular Curves In Metric Spaces
- Mathematics
- 2006
We discuss 1-Ahlfors-regular connected sets in a general metric space and prove that such sets are `flat' on most scales and in most locations. Our result is quantitative, and when combined with work…
A Tour of Subriemannian Geometries, Their Geodesics and Applications
- Mathematics
- 2006
Geodesics in subriemannian manifolds: Dido meets Heisenberg Chow's theorem: Getting from A to B A remarkable horizontal curve Curvature and nilpotentization Singular curves and geodesics A zoo of…
Analysis of and on uniformly rectifiable sets
- Mathematics
- 1993
The notion of uniform rectifiability of sets (in a Euclidean space), which emerged only recently, can be viewed in several different ways. It can be viewed as a quantitative and scale-invariant…