The top ten values of harmonic index in chemical trees

@inproceedings{Aliye2015TheTT,
  title={The top ten values of harmonic index in chemical trees},
  author={Zolfi Aliye and Reza Ali and Moradi Sirous},
  year={2015}
}
Let G be an n−vertex graph with degree sequence d1, d2, ..., dn. The harmonic index H(G) is defined as ) ( / G I n , where . ) / ( ∑ = n 1 i i d 1 = I(G) In this paper the top ten values of harmonic index in the set of all chem ical trees of order n are determined. 

Figures, Tables, and Topics from this paper.

Citations

Publications citing this paper.

References

Publications referenced by this paper.
SHOWING 1-7 OF 7 REFERENCES

Some properties of the Narumi-Katayama index

  • Appl. Math. Lett.
  • 2012
VIEW 8 EXCERPTS
HIGHLY INFLUENTIAL

Introduction to graph theory

VIEW 3 EXCERPTS
HIGHLY INFLUENTIAL

New topological indices for finite and infinite systems

H. NARUMI
  • MATCH Commun. Math. Comput. Chem. 22
  • 1987
VIEW 8 EXCERPTS
HIGHLY INFLUENTIAL

I

M. FISCHERMANN
  • GUTMAN , A. HOFFMANN, D. RAUTENBACH, D. VIDOVIĆ and L. VOLKMANN , Extremal Chemical Trees, Z. Naturforsch. 57 a
  • 2002

An inequality for the simple topological index

I. GUTMAN, H. NARUMI
  • Coll. Sci. Pap. Fac. Sci. Kragujevac 11
  • 1990
VIEW 2 EXCERPTS

Similar Papers

Loading similar papers…