52 Citations
The Structure of Parafermion Vertex Operator Algebras: General Case
- Mathematics
- 2009
The structure of the parafermion vertex operator algebra associated to an integrable highest weight module for any affine Kac-Moody algebra is studied. In particular, a set of generators for this…
The structure of parafermion vertex operator algebras K(osp(1|2n),k)
- MathematicsJournal of Algebra
- 2021
Representations of Z2-orbifold of the parafermion vertex operator algebra K(sl2,k)
- MathematicsJournal of Algebra
- 2019
Quantum dimensions and fusion rules for parafermion vertex operator algebras
- Mathematics
- 2014
The quantum dimensions and the fusion rules for the parafermion vertex operator algebra associated to the irreducible highest weight module for the affine Kac-Moody algebra A (1) 1 of level k are…
The irreducible modules and fusion rules for the parafermion vertex operator algebras
- Mathematics
- 2014
The irreducible modules for the parafermion vertex operator algebra associated to any finite dimensional Lie algebra and any positive integer are identified, the quantum dimensions are computed and…
Lattice Subalgebras of Strongly Regular Vertex Operator Algebras
- Mathematics
- 2014
We prove a sharpened version of a conjecture of Dong–Mason about lattice subalgebras of a strongly regular vertex operator algebra V, and give some applications. These include the existence of a…
Singular Vectors and Zhu’s Poisson Algebra of Parafermion Vertex Operator Algebras
- Mathematics
- 2013
We study Zhu’s Poisson algebra of parafermion vertex operator algebras associated with integrable highest weight modules for the affine Kac-Moody Lie algebra \(\widehat{sl}_{2}\). Using singular…
Trace functions of the parafermion vertex operator algebras
- MathematicsAdvances in Mathematics
- 2019
References
SHOWING 1-10 OF 27 REFERENCES
Structure of the standard modules for the affine Lie algebra A[(1)] [1]
- Mathematics
- 1985
The Lie algebra $A_1^(1)$ The category $\cal P_k$ The generalized commutation relations Relations for standard modules Basis of $\Omega_L$ for a standard module $L$ Schur functions Proof of linear…
Unitary representations of the Virasoro and super-Virasoro algebras
- Mathematics
- 1986
It is shown that a method previously given for constructing representations of the Virasoro algebra out of representations of affine Kac-Moody algebras yields the full discrete series of highest…
On quantum Galois theory
- Mathematics
- 1994
The goals of the present paper are to initiate a program to systematically study and rigorously establish what a physicist might refer to as the “operator content of orbifold models.” To explain what…
Vertex operator algebras associated to representations of affine and Virasoro Algebras
- Mathematics
- 1992
The first construction of the integrable highest-weight representations of affine Lie algebras or loop algebras by Kac i-K] was greatly inspired by the generalization of the Weyl denominator formula…
Classification of local conformal nets
- Mathematics
- 2005
We completely classify diffeomorphism covariant local nets of von Neumann algebras on the circle with central charge c less than 1. The irreducible ones are in bijective correspondence with the pairs…
Classification of local conformal nets. Case c < 1
- MathematicsAnnals of Mathematics
- 2004
We completely classify diffeomorphism covariant local nets of von Neumann algebras on the circle with central charge c less than 1. The irreducible ones are in bijective correspondence with the pairs…