The structural switch of nucleotide-free kinesin


Kinesin-1 is an ATP-dependent motor protein that moves towards microtubules (+)-ends. Whereas structures of isolated ADP-kinesin and of complexes with tubulin of apo-kinesin and of ATP-like-kinesin are available, structural data on apo-kinesin-1 in the absence of tubulin are still missing, leaving the role of nucleotide release in the structural cycle unsettled. Here, we identified mutations in the kinesin nucleotide-binding P-loop motif that interfere with ADP binding. These mutations destabilize the P-loop (T87A mutant) or magnesium binding (T92V), highlighting a dual mechanism for nucleotide release. The structures of these mutants in their apo form are either isomorphous to ADP-kinesin-1 or to tubulin-bound apo-kinesin-1. Remarkably, both structures are also obtained from the nucleotide-depleted wild-type protein. Our results lead to a model in which, when detached from microtubules, apo-kinesin possibly occupies the two conformations we characterized, whereas, upon microtubule binding, ADP-kinesin converts to the tubulin-bound apo-kinesin conformation and releases ADP. This conformation is primed to bind ATP and, therefore, to run through the natural nucleotide cycle of kinesin-1.

DOI: 10.1038/srep42558

4 Figures and Tables

Cite this paper

@inproceedings{Cao2017TheSS, title={The structural switch of nucleotide-free kinesin}, author={Luyan Cao and Soraya Cantos-Fernandes and Beno{\^i}t Gigant}, booktitle={Scientific reports}, year={2017} }