The speed of propagation for KPP type problems . I-Periodic framework

  title={The speed of propagation for KPP type problems . I-Periodic framework},
  author={Henri Berestycki and François Hamel and Ostenhof N. Nadirashvili},
This paper is devoted to some nonlinear propagation phenomena in periodic and more general domains, for reaction-diffusion equations with Kolmogorov–Petrovsky–Piskunov (KPP) type nonlinearities. The case of periodic domains with periodic underlying excitable media is a follow-up of the article [7]. It is proved that the minimal speed of pulsating fronts is given by a variational formula involving linear eigenvalue problems. Some consequences concerning the influence of the geometry of the… CONTINUE READING


Publications referenced by this paper.
Showing 1-10 of 87 references

Functional Integration and Partial Differential Equations

  • M. Freidlin
  • Ann. of Math. Stud
  • 1985
Highly Influential
7 Excerpts

Multidimensional nonlinear diffusions arising in population genetics

  • D. G. Aronson, H. F. Weinberger
  • Adv. Math. 30,
  • 1978
Highly Influential
12 Excerpts

Nonlinear diffusion in population genetics, combustion and nerve propagation. In: Partial Differential Equations and Related Topics

  • D. G. Aronson, H. F. Weinberger
  • Lecture Notes in Math. 446,
  • 1975
Highly Influential
8 Excerpts

Étude de l’́ equation de la diffusion avec croissance de la quantit é de matì ere et son applicatioǹ a un probl̀ eme biologique

  • A. N. Kolmogorov, I. G. Petrovsky, N. S. Piskunov
  • Bull. Univ. Moscou Śer. Internat.A 1,
  • 1937
Highly Influential
7 Excerpts

Front propagation in periodic excitable media

  • H. Berestycki, F. Hamel
  • Comm. Pure Appl. Math.55,
  • 2002
Highly Influential
9 Excerpts

The speed of travelling waves for convective reaction-diffusion equations. Preprint MPI, Leipzig (2001) The speed of propagation for KPP type problems. I: Periodic framework

  • S. Heinze
  • 2001
Highly Influential
6 Excerpts

Existence and uniqueness of travelling waves in a reaction-diffusion equation with combustion nonlinearity

  • X. Xin
  • Indiana Univ. Math. J. 40,
  • 1991
Highly Influential
4 Excerpts