The spectral decomposition of shifted convolution sums

@inproceedings{Harcos2007TheSD,
  title={The spectral decomposition of shifted convolution sums},
  author={Gergely Harcos},
  year={2007}
}
Let π1, π2 be cuspidal automorphic representations of PGL2(R) of conductor 1 and Hecke eigenvalues λπ1,2 (n), and let h > 0 be an integer. For any smooth compactly supported weight functions W1,2 : R → C and any Y > 0 a spectral decomposition of the shifted convolution sum 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 36 references

A new bound k2/3+ε for Rankin-Selberg L-functions for Hecke congruence subgroups

Y.-K. Lau, J. Liu, Y. Ye
Int. Math. Res. Pap. 2006, Art. ID 35090, • 2006

Sparse equidistribution problems, period bounds, and subconvexity

A. Venkatesh
2006

Sums of the additive divisor problem type and the inner product method

M. Jutila
J. Math. Sci (New York) • 2006

The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points

G. Harcos, P. Michel
II, Invent. Math • 2006

- functions on the critical line

Bl V. Blomer, L Rankin-Selberg
Manuscr . Math . • 2005

Rankin-Selberg L-functions on the critical line

V. Blomer
Manuscr. Math • 2005

A note on the mean value of the zeta and L - functions

Y. Motohashi
XIV , Proc . Japan Acad . Ser . A Math . Sci . • 2004

A note on the mean value of the zeta and L-function

Y. Motohashi
XIV, Proc. Japan Acad. Ser. A Math. Sci • 2004

Similar Papers

Loading similar papers…