The size of m-irreducible blocking sets and of the sets of class [0, n1, ..., nl]

We provide an upper bound of the size of an m-irreducible blocking set in a linear space. This upper bound is a generalization of the Bruen–Thas bound in q and improves it if m > (q2 + q − q√q)/(q√q + 1). We prove that in a finite affine plane q of order q, two blocking sets mutually complementary are both irreducible, if and only if q = 4. Moreover, we… CONTINUE READING