The second Painlevé equation in the large-parameter limit I : Local asymptotic analysis

@inproceedings{Joshi1999TheSP,
  title={The second Painlev{\'e} equation in the large-parameter limit I : Local asymptotic analysis},
  author={Nalini T. Joshi},
  year={1999}
}
In this paper, we find all possible asymptotic behaviours of the solutions of the second Painlevé equation y = 2y + xy+ α as the parameter α→ ∞ in the local region x ≪ α. We prove that these are asymptotic behaviours by finding explicit error bounds. Moreover, we show that they are connected and complete in the sense that they correspond to all possible values of initial data given at a point in the local region. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
SHOWING 1-10 OF 23 REFERENCES

Recherches sur les transcendantes de M

  • P. Boutroux
  • Painlevé et l’étude asymptotique des équations…
  • 1914
Highly Influential
7 Excerpts

A direct proof that the solutions of the six Painlevé equations have no movable singularities except poles

  • N. Joshi, M. D. Kruskal
  • Stud. Appl. Math., 93:187–207
  • 1994
Highly Influential
5 Excerpts

The Painlevé connection problem: an asymptotic approach I

  • N. Joshi, M. D. Kruskal
  • Stud. Appl. Math., 86:315–376
  • 1992
Highly Influential
7 Excerpts

An asymptotic approach to the connection problem for the first and the second Painlevé equations

  • N. Joshi, M. D. Kruskal
  • Phys. Lett. A, 130:129–137
  • 1988
Highly Influential
4 Excerpts

On the structure of Painlevé transcendents with a large parameter II

  • T. Kawai, Y. Takei
  • Proc. Japan Acad. Ser. A Math. Sci, 72:144–147
  • 1996
2 Excerpts

WKB analysis of Painlevé transcendents with a large parameter I

  • T. Kawai, Y. Takei
  • Adv. Math., 118:1–33
  • 1996
2 Excerpts

Asymptotics of the Painlevé II equation

  • P. Deift, X. Zhou
  • Comm. Pure Appl. Math., 48:277–337
  • 1995
1 Excerpt

Elliptic asymptotics of the first and the second Painlevé transcendents

  • A. V. Kitaev
  • Russian Math. Surveys, 49:81–150
  • 1994
2 Excerpts

On the asymptotic analysis of the Painlevé equations via the isomonodromy method

  • A. R. Its, A. S. Fokas, A. A. Kapaev
  • Nonlinearity, 7:1291–1325
  • 1994
1 Excerpt

Similar Papers

Loading similar papers…