The response of red cell hexose monophosphate shunt after sulfhydryl inhibition.

Abstract

In this investigation, we studied the importance of cellular glutathione (GSH) in the hexose monophosphate shunt (HMPS) activity of unstimulated human erythrocytes and the mechanism by which pyruvate stimulates the HMPS. The rate of HMPS activity was measured by the production of radioactive CO2 from 14C-1-glucose or 14C-1-ribose using a vibrating reed electrometer and ionization chamber. HMPS activity was not significantly impaired by N-ethylmaleimide (NEM) in concentrations which bound all red cell GSH. Red cells incubated under carbon monoxide (CO), an experimental condition which eliminates peroxide production, still had HMPS activity which was 44% of the value under air. Pyruvate stimulation of the HMPS was unaffected by doses of NEM which bound all cellular GSH or by incubation under CO. These data indicated that pyruvate stimulation of the HMPS occurs by pathways which do not involve peroxide formation, GSH, or oxygen. This study indicates that sulfhydryl blockade of GSH does not necessarily inhibit HMPS activity and that HMPS activity in red cells may respond to reactions not linked directly to glutathione reduction.

Cite this paper

@article{Sagone1975TheRO, title={The response of red cell hexose monophosphate shunt after sulfhydryl inhibition.}, author={Arthur L. Sagone and Stanley P. Balcerzak and Earl N. Metz}, journal={Blood}, year={1975}, volume={45 1}, pages={49-54} }