[The reaction mechanism of Na, K-ATPase].

Abstract

To help characterize the Na,K-ATPase active site with enzyme incorporated into phospholipid vesicles, the activities with alternative substrates were compared, 22Na/Na-transport was equivalent with ATP, CTP, carbamylphosphate and acetylphosphate, but slower with CTP, 3-O-methylfluoresceinphosphate (3-O-MFP), nitrophenylphosphate and umbelliferonephosphate. It indicates a slower rate of formation of phosphorylating enzyme complex in conformation position of E1 (E1P) when the second group of substrates is bound with enzyme active center. 22Na/K-transport was half as effective with CTP as with ATP and was far slower with the other substrates. It indicates a more stringent selectivity at the low-affinity site of enzyme in conformation E2 that accelerates the slow step of this transport mode. Although enzyme modification with fluoresceinisothiocyanate blocks the high-affinity site to ATP, the K-phosphatase reaction catalyzed by E2 is retained, even with a substrate, 3-O-MFP, that binds to the adenine pocket. Dimethylsulfoxide inhibits hydrolysis of the nucleotides and of the carboxylic phosphate substrates of the K-phosphatase reaction, but stimulates hydrolysis of the phenolic phosphate substrates (nitrophenylphosphate and umbelliferone phosphate) which normally are hydrolyzed more slowly than the other substrates. On the basis of these data the authors propose the model of Na,K-ATPase active center.

Cite this paper

@article{Robinson1990TheRM, title={[The reaction mechanism of Na, K-ATPase].}, author={Jennifer D Robinson and Mario Amaya Guerra and Randall Davis and Mitchell I. Steinberg}, journal={Nauchnye doklady vyssheĭ shkoly. Biologicheskie nauki}, year={1990}, volume={6}, pages={97-106} }